
 1

Reality-Based Object Movement Techniques for 3D 
Wolfgang Stuerzlinger, Darius Dadgari 

York University 
Toronto, Canada 

http://www.cs.yorku.ca/{~wolfgang|~dariusd} 

Ji-Young Oh 
University of Arizona 

Tucson, AZ, USA 
http://3dvis.optics.arizona.edu 

 
ABSTRACT 
Scene layout and part assembly are basic tasks in 3D object 
manipulation. While movement methods based on 3D or 
6D input devices exist, the most efficient 3D movement 
techniques are based on utilizing only two degrees of free-
dom. This poses the problem of mapping the motion of the 
2D input device to efficient and predictable object motion 
in 3D. We present a new method to map 2D input to 3D 
motion in this paper. The object position follows the mouse 
cursor position closely, while the object always stays in 
contact with other surfaces in the scene. In contrast to exist-
ing techniques, the movement surface and the relative ob-
ject position is determined using the whole area of overlap 
of the moving object with the static scene. The resulting 
object movement is visually smooth and predictable, while 
avoiding undesirable collisions. The technique also utilizes 
the fact that people easily recognize the depth-order of 
shapes based on occlusions. The proposed technique runs in 
real-time. Finally, the evaluation of the new technique with 
a user study shows that it compares very favorably to con-
ventional techniques. 

INTRODUCTION 
Moving objects is one of the most basic tasks of 3D scene 
construction. When people design a scene with multiple 
objects, they repeatedly realign or adjust different parts, to 
explore the design space. Our goal is to provide an efficient 
and smooth object motion technique aimed at facilitating 
this explorative process in 3D manipulation systems such as 
Computer Aided Design (CAD), Virtual Reality (VR), and 
Augmented Reality (AR) systems. 

In general, object motion is performed either with a mouse 
in CAD, with desktop-VR/AR systems, or with 3D or 6D 
input devices in VR and AR systems. We briefly discuss 
previous work by reviewing related work with input devices 
with two DOF as well as input devices with more DOFs. 

Related Work – 2D Input Devices 
Strauss categorized possible solutions to the problem of 
mapping 2D input to 3D movement [18]. He enumerates the 
idea of using handles, moving objects parallel to the view 
plane, using obvious structures to determine the plane of 
motion, and heuristics. The authors also claim that there is 
no “perfect” solution, as there is no approach that is both 
easy-to-use and robust at the same time. Consequently, us-
ers need to frequently check if the object is the desired posi-
tion, which can become tedious. 

Many commercial CAD systems utilize some form of han-
dles to provide for 3D object motion. While this solution 
allows no room for failure or unexpected results, the task of 
moving an object may become tedious, as the user has to 
mentally separate the desired 3D movement into 1D or 2D 
components. Moreover, if objects are in contact, these ob-
jects may occlude handles and may make it difficult or even 
impossible to manipulate an object. The second category of 
movement techniques, moving objects parallel to the view 
plane, is rarely employed as the results of object movement 
depends strongly on the current view direction, which is 
undesirable. The third approach, which utilizes other struc-
tures in the scene, typically uses a ray from the eye point 
through the current pixel to identify the first intersection 
point with the scene. This intersection is then used to com-
pute the position of the 3D object. E.g. Bier [1] used this 
approach in his snap-dragging technique, which snaps to 
the closest visual feature in a wire-frame display. However, 
this approach suffers from severe problems in complex 
scenes. As an example for a heuristic approach we list the 
idea of using a library of predefined objects with predefined 
movement behaviors. These behaviors are then used to con-
strain objects to particular places in a scene (such as an “on-
wall” constraint). A ray along the current mouse position is 
then used to find the places in the scene where the con-
straints are fulfilled and the object is close to the cursor 
position. In the work on the MIVE system [17], we evalu-
ated an implementation of this idea with several user stud-
ies and showed that such a technique allows naïve users to 
quickly populate 3D scenes with predefined objects. 

Related Work – 3D Input Devices 
A number of authors have investigated the performance of 
object manipulation with 3D input devices, such as a space-
ball or a six degree-of-freedom tracker. Such devices enable 
direct interaction with a 3D scene and are typically used in 
VR/AR systems. One of the first researchers to present a 
system was Bolt in 1980 [2]. Subsequently many other re-
searchers studied the creation and manipulation of 3D envi-
ronments in VR. Bowman [3], Mine [8], and Pierce [13] 
proposed different 3D manipulation methods that can be 
applied in a variety of settings. For a more complete over-
view over work in this area, we refer the reader to a recent 
book about 3D user interfaces [4]. 

Several of these systems use collision detection to prevent 
interpenetration of objects. However, few utilize constraints 
for object manipulation and these support only the simplest 



 

 2

geometric constraints (e.g. “on-plane”). A general con-
straint-based system was presented by Multigen-Paradigm 
in the ‘SmartScene’ technology [16], which provides for 
arbitrary scripting of object behavior. Users can interact 
with the scene using tracked pinch-gloves, and the pre-
defined object behaviors facilitate 3D object manipulation. 

Observations about Real-World Object Manipulation 
The following observations are based on data collected in a 
series of user studies on 3D object movement techniques 
targeted at naïve users. In these studies (see e.g. [10, 12, 
17]) we experimented with many different alternative 
strategies, including the use of 2D, 3D, and 6D input de-
vices as well as many forms of widgets to move objects in a 
3D scene. Based on the results of these studies, we believe 
that the following set of rules captures the most important 
design decisions for 3D object movement techniques. 

1. In the real world, (almost) all objects are attached or 
connected to other objects. 

2. Objects do not interpenetrate each other. 

3. Bringing objects in contact with each other is the natu-
ral way to position them relative to each other. 

4. Only visible objects can be manipulated. 

5. The most important cue for judging 3D position in real 
scenes is occlusion. 

6. Many standard computer graphics techniques such as 
“handles”, “wireframe”, “3 orthogonal views”, etc. 
tend to confuse users. 

7. In general, 3D or 6D input devices provide less preci-
sion than 2D input devices. 

8. Users seem to consider the entire area of visual overlap 
of the (moving) foreground object with the (static) 
background scene when deciding where the object is. 

Please note that the above observations are based on ex-
periments with naïve users, i.e. users who have no 3D com-
puter graphics education or significant gaming experience.  

In the following, we briefly discuss why each of the above 
points is important when dealing with naïve users. 

1. Floating objects are exceptional in the real world and 
our observations in the user studies confirm that most 
users are surprised when an object starts to float when 
moved. That means that the correct default for any ma-
nipulation technique for 3D object motion is that ob-
jects should stay in contact with the rest of the world! 

2. Most naïve users get confused if objects interpenetrate 
each other. This is easily solved with collision detec-
tion, something that can be computed nowadays in 
real-time even for complex scenes [5, 7]. 

3. The paradigm of sliding an object on the surface of 
another until it reaches the desired position is the most 
natural way to position objects – and in fact makes any 

task much easier. This is easily demonstrated by watch-
ing a child position toy blocks. The technical way to 
implement this is to choose a movement surface from 
the set of surfaces of the static scene and to displace the 
object on that surface. Often this is realized via the 
definition of constraints to object movement, see the 
section on previous work. 

4. Naïve users don’t try to manipulate objects that are not 
visible. They typically rotate the view/scene so that the 
part in question is visible. One indication for this is that 
a comparison of different interaction methods for 3D 
input devices found that the best techniques are based 
on the notion of ray casting [14]. Ray casting identifies 
the first object that is visible along an infinite ray from 
the manipulation device into the scene (much like a la-
ser pointer). Hence, it is sufficient to allow the user to 
select all objects from a 2D image! And indeed, in 
[14], the authors hypothesize that all ray casting tech-
niques can be approximated as 2D techniques. 

5. As documented by research into visual perception, 
people judge 3D position based on several cues. Be-
sides perspective, the most important cue for 3D posi-
tion is occlusion [21]. In our studies, we found that for 
scenes without floating objects (see above), perspective 
and occlusion combined with the ability to quickly 
move the viewpoint are usually sufficient to allow hu-
mans to understand the 3D position of an object in rela-
tion to other objects. Finally, it is interesting to note 
that recent research confirmed that from an end-users 
point of view, most stereo technologies are not very 
mature and are tiresome and/or problematic to use on a 
daily basis (e.g. [6, 20]). 

6. The idea that one has to use “handles” to move an ob-
ject in 2D is an instance of an indirect manipulation 
technique. It is sufficient to point out that in the domain 
of (2D) desktop environments, this idea was very rap-
idly eclipsed by the idea of direct manipulation [15], as 
this paradigm proved to be much simpler to under-
stand. Similarly, most naïve users can’t readily inter-
pret a wire frame view or three simultaneous views. 

7. A human hand held in free space will “jitter” more than 
a hand that is supported by a real surface. That means 
that an input device that is limited to 2DOF provides 
more precision and hence usually affords also more ef-
ficient manipulation. In VR/AR research, this has been 
already realized through the adoption of techniques 
such as the Personal Interaction Panel [19], which ef-
fectively transforms a 3DOF input device into a 2DOF 
input device. 

8. Practically all techniques for 3D object motion use the 
current position of the pointing device to compute the 
(new) 3D position. This effectively reduces the compu-
tation to a point mapping problem, and all current 3D 
object motion techniques are based on this idea. How-
ever, research into vision in primates discovered that 



 3

the perceptive field for an object that is being held in 
the hand covers the whole object [9]. In other words, 
there is strong evidence that the whole visual area of an 
object is used to judge 3D position. And indeed, we 
observed in our user studies that point-based tech-
niques do not work as well as area-based techniques. 

The presented list is based on our observations of naïve 
users. However, we would like to point out that while it 
may be possible that expert users can achieve higher per-
formance by ignoring some of the above observations, we 
believe that for many kinds of routine scene modifications 
even expert users will greatly benefit from techniques that 
follow these guidelines. 

REALITY-BASED 3D OBJECT MOVEMENT 
Based on the above discussion, we designed a new 3D ob-
ject movement technique that fulfills these criteria. Instead 
of using widgets, we allow the user to simply “grab” any 
object and slide it across the scene by dragging it to the 
desired position to visually assess the impact of a change. 
One of the main ideas behind this is that this will greatly 
facilitate exploration. 

As the user moves an object, he/she utilizes his/her knowl-
edge of the other surface(s) hidden by an area covered by 
the moving object. We implement this by always moving 
the object on one of the surfaces that it occludes. This im-
plicitly guarantees that the object always stays attached to 
other objects. More precisely, we look for the closest visi-
ble surface behind the moving object and move the manipu-
lated object onto it. Finding visible surfaces can be done 
very efficiently with graphics hardware, as can the detec-
tion of collisions [5, 7]. 

The attractiveness of the first alternative is its simplicity, as 
we only need to determine the foremost surface of the 

(static) scene, regardless of the current position of the mov-
ing object. Furthermore, this method ensures that the mov-
ing object is always closer to the viewer than the rest of the 
scene. This implicitly guarantees that there are no collisions 
with other objects. The downside of this method is that 
when a scene is cluttered with many objects, and there are 
consequently many surfaces, then the moving object will 
jump frequently in depth, and positioning the object re-
quires more attention from the user. A pilot study of an 
implementation of this idea showed that this is indeed a 
problem that users encounter in practice. 

The second alternative again identifies the first surface be-
hind the moving object, but ignores any surface closer to 
the viewer than the moving object. In this method, the mov-
ing object does not immediately pop out to the surface in 
front of the user, unless the moving object becomes the one 
closest to the viewer. Usually, this conforms better to the 
intentions of the user. The limitation of this alternative is 
that when a small object moves forward, it may penetrate 
another object in front. To address this problem, we employ 
a collision detection method. Once a collision is found, the 
object jumps also in front of the colliding object, as with the 
first alternative. 

Figure 1 depicts several movement sequences with the 
original mouse-ray techniques and the two new techniques 
mentioned in this section. Here the goal is to slide the chair 
under the table. Figure 1(a) shows the movement based on 
the foremost surface behind the mouse position. As soon as 
the mouse pointer overlaps with the surface of the table, the 
chair moves on top of it. However, when the mouse pointer 
moves off the table again, the chair drops immediately to 
the floor and ends up in a position where it collides with the 
table (fourth image). There are two ways to get the chair 
under the table: One is to change the viewpoint - Figure 

1(c). The other alternative 
is to “grab” the chair by 
the top part of the backrest 
(an area that is visually 
quite small) and to move it 
towards the table while 
avoiding overlap with the 
table itself. However, this 
is very non-intuitive, and 
most users do not realize 
that this is possible – es-
pecially since the position 
that needs to be “grabbed” 
is not at all obvious. 

The image sequence de-
picted in Figure 1(b) illus-
trates the technique that 
utilizes the foremost sur-
face behind the image of 
the moving object. As 
soon as the image of the 
chair overlaps with the 

(a)  

(b) (c)  

(d)  

Figure 2. Image sequences illustrating object movement based on (a) the mouse position 
technique, (b) & (c) a technique based on the foremost visible surface, and (d) our new tech-

nique based on the foremost surface behind the moving object. For a detailed explanation 
please refer to the text. 



 

 4

table (second image), the chair starts to slide on the table 
surface. Only when the image of the chair does not overlap 
with the table anymore, does the chair drop down to the 
floor. Note that no collision occurs with this technique, but 
the only way to drag the chair under the table is again to 
change the viewpoint, as in Figure 1(c). 

Finally, Figure 1(d) illustrates the new technique that util-
izes the first surface behind the moving object itself. As the 
chair slides on the floor it continues to move underneath the 
table, because the first surface visible behind the chair is 
the floor. In the third image, the chair is clearly in the de-
sired position and the user is finished. For illustration pur-
poses, we continue this sequence with the fourth image 
from the left, where a collision occurs, which prompts the 
technique to move the chair onto the table. 

Implementation 
This algorithm can be efficiently implemented by using the 
features of modern graphics hardware. In particular, we can 
detect the foremost hidden surface by rendering the back-
ground scene. Rendering the moving object into a separate 
area and using the depth information computed by the 
hardware for both images aids in the identification of how 
much the object has to be moved in 3D. To avoid problems 
due to discretization, the implementation also uses an item 
buffer, which encodes where each object is visible on the 
screen, to compute a more precise answer. Further details of 
the implementation are described in [11]. Finally, our tech-
nique allows objects to move freely in 3D space, when an 
object is seen over the background (i.e. there is no visual 
overlap with other objects). In this case, the movement sur-
face is chosen to be the axis-aligned plane that is most or-
thogonal to the viewing direction. This provides users with 
the option to quickly create “floating” objects, if necessary. 

Evaluation 
The presented technique works well for general shapes, 
even for objects that have large concavities or curved sur-
faces. For curved surfaces, the API’s of current graphics 
cards necessitates an approximation of the curved surface 
into many small planar surfaces, which allows our algo-
rithm to work without issue. 

We evaluated the described scheme in several user studies 
that asked the participants to assemble various objects with 
a mouse in a desktop 3D modeling system [12]. We found 
that users had little problem in understanding how the new 
technique works, were significantly faster with it, and were 
quickly able to utilize the technique to its full potential. 

CONCLUSION AND FUTURE WORK 
Based on the results of a series of users studies, we pre-
sented a list of guidelines for techniques to move objects in 
3D scenes. Then we presented a new reality-based tech-
nique to move objects in 3D scenes that provides intuitive 
3D object motion, which naïve users found easy to under-
stand and easy to utilize effectively. As this technique uses 
graphics hardware, it can handle even complex scenes effi-

ciently. In the near future, we plan to evaluate this tech-
nique in IVY, our six-sided fully immersive VR system as 
well as other VR/AR setups. 

REFERENCES 
1. E. Bier, Snap-dragging in three dimensions. SIGGRAPH 

1990, 193-204. 

2. R. Bolt, Put-that-there, SIGGRAPH 1980, 262-270. 

3. D. Bowman, et. al, An evaluation of techniques for grabbing 
and manipulating remote objects in immersive virtual envi-
ronments. Symp. on Interactive 3D Graphics, 1997, 35-38. 

4. D. Bowman, E. Kruijff, J. LaViola, I. Poupyrev, 3D User 
Interfaces: Theory and Practice, Addison-Wesley, 2004. 

5. K. Dave, K. P. Dinesh, CInDeR: Collision and Interference 
Detection in Real-time using graphics hardware, Graphics In-
terface, 2003. 

6. D. Diner, D. Fender, Human Engineering in Stereoscopic 
Viewing Devices. Plenum Press, 1993. 

7. N. K. Govindaraju, et al, CULLIDE: interactive collision 
detection between complex models in large environments us-
ing graphics hardware. SIGGRAPH Workshop on Graphics 
Hardware 2003, 25-32. 

8. M. Mine, F. Brooks, C. Sequin, Moving Objects in Space: 
Exploiting proprioception in virtual environments 
SIGGRAPH 97, pp. 19-26. 

9. S. Obayashi, et al., Functional brain mapping of monkey tool 
use, NeuroImage 14: 853-861, 2001. 

10. J.-Y. Oh, W. Stuerzlinger, A system for desktop conceptual 
3D design, Virtual Reality, 2004 7: 198-211. 

11. J.-Y. Oh, W. Stuerzlinger, Moving objects with 2D input 
devices in CAD Systems and Desktop Virtual Environments, 
Graphics Interface 2005, 141-149. 

12. J.-Y. Oh, Desktop 3D conceptual design systems, Ph.D The-
sis, 2005. York University. 

13. J. Pierce, et al., Image plane interaction techniques in 3D 
immersive environments. Symp. on Interactive 3D Graphics. 
1997. 39-43. 

14. I. Poupyrev, et al., Egocentric object manipulation in virtual 
environments: empirical evaluation of interaction techniques. 
Eurographics 1998. 

15. B. Shneiderman, Direct manipulation: A step beyond pro-
gramming languages, IEEE Computer 16, 8, 1983, 57-69. 

16. SmartScene, promotional material, Multigen-Paradigm, 1999. 

17. G. Smith, et. al., 3D Scene Manipulation with 2D Devices 
and Constraints, Graphics Interface 2001, 135-142. 

18. P. S. Strauss, et al., The design and implementation of direct 
manipulation in 3D. SIGGRAPH 2002 Course Notes, 2002. 

19. Z. Szalavári, M. Gervautz, The Personal Interaction Panel, A 
Two-Handed Interface for Augmented Reality, Eurographics 
1997, 335-346. 

20. Z. Wartell, L. F. Hodges, W. Ribarsky, A geometric compari-
son of algorithms for fusion control in stereoscopic HTDs, 
IEEE TVCG, 8, 129-143, 2002. 

21. C. Wickins, J. Hollands, Spatial displays, in Engineering 
psychology and human performance, Prentice-Hall, 1999.


