
Parallel Visibility Computations for

Parallel Radiosity

by

W. St�urzlinger and C. Wild

Johannes Kepler University of Linz
Institute for Computer Science
Department for Graphics and parallel Processing
Altenbergerstra�e 69, A-4040 Linz, Austria, Europe

Tel.: +43(732)2468-884, Fax : +43(732)2468-10
e-mail: wrzl@gup.uni-linz.ac.at



Parallel Visibility Computations for

Parallel Radiosity

W. St�urzlinger and C. Wild

Institute for Computer Science, Johannes Kepler University of Linz, Austria

Abstract

The radiosity method models the interaction of light between di�use reecting sur-

faces, thereby accurately predicting global illumination e�ects. Due to the high com-

putational e�ort to calculate the transfer of light between surfaces and the memory re-

quirements for the scene description, a distributed, parallelized version of the algorithm

is needed for scenes consisting of thousands of surfaces. We present a distributed, par-

allel progressive radiosity algorithm. Then we parallelize the visibility calculations and

analyze the results.

1 Introduction

Radiosity has become a popular method for image synthesis due to its ability to generate im-
ages of high realism. It was �rst introduced to computer graphics by Goral et al. [GORA84].
Further research resulted in the progressive re�nement method, which quickly produces good
approximations of the �nal solution [COHE88]. The radiosity method was extended to in-
clude specular reection through the so called two-pass approach. For recent developements
see [MALL88, SILL89, SILL91].

Common to all these methods is the representation of the surfaces of the environment by
a mesh of quadrilaterals and triangles. These \patches" are used to store the radiosity on
the respective part of the surface.

A formfactor is a value describing the "inuence" of two patches onto each other. These
formfactors were �rst calculated by the use of a hemicube [COHE85]. A hemicube is placed
around the center of a patch and all other patches are projected onto its surfaces. The
projected area gives an estimate for the formfactor between the patches.

Because this estimate of the formfactors may be inexact even for simple cases [BAUM89],
other methods for computing the formfactors were suggested and/or implemented. Baum
used a hybrid method involving both numerical and analytic methods [BAUM89] and other
methods use raytracing to compute the formfactors [WALL89, SILL89, MALL88, TAMP91].
Wallace subdivides the shooting patch (i.e. the lightsource) until an analytic solution can be
used to approximate the (delta-)formfactors of the respective delta-areas. Then the formfac-
tors for all visible delta-areas are summed up giving a good approximation to the formfactor
of the shooting patch.

The calculation of the formfactors accounts for most of the computation time of the
radiosity method (e.g. 70 - 95 %). Also the memory requirement is clearly a function of the
number of patches. These problems led to the developement of parallel implementations of
the progressive re�nement radiosity method [BAUM90, RECK90, FEDA91, CHAL91].

1



1.1 Progressive Re�nement

The radiosity method partitions the surfaces of the scene in small, at patches and computes
the illumination for each of those patches. The radiosity of a patch is determined by the
radiosity it emits directly plus all light that is reected. This is described by the radiosity
equation:

Bi = Ei + �i

n�1X

j=0

Fi;jBj (1)

where

� n is the number of the patches.

� Bi is the radiosity of the i-th patch.

� Ei is the emitted radiosity of the i-th patch.

� �i is the reectivity of the i-th patch.

� Fi;j is the formfactor from patch i to patch j.

The linear equation system de�ned above is diagonally dominant, not symetric and not sparse.
It can be solved with e.g. an iterative Gauss-Seidel solution method and this method converges
quickly in practice. As the memory reqirement for the formfactor matrix is proportional to
n2 this method becomes impractical for larger n. Also the computational e�ort to compute
all Fi;j becomes prohibitively large.

The progressive re�nement method solves this equation system iteratively also. But due
to a reordering of the solution process, it is only neccesary to calculate (and store) one column
of the matrix per iteration step. This method has the following illiustrative interpretation.
An iteration step distributes (\shoots") the radiosity of the patch with the maximum unshot
radioisity to all other patches in the environment. The advantage of this method is that we
can display the result after each iteration step, and therefore give the user feedback how the
resulting picture is going to look approximatively.

2 Parallelization of the Progressive Re�nement Method

2.1 Previous Research

Parallelization of the Progressive Re�nement Method has been attempted in several ways.
Baum [BAUM90] used a multiprocessor workstation calculating the hemicubes using a hard-
ware z-bu�er. Recker [RECK90] used a cluster of workstations.

Feda [FEDA91] presented an implementation on a transputer network, where each proces-
sor has local memory. The formfactors were calculated using the hemicube method. Chalmers
[CHAL91] also presented an implementation on a transputer network. He improved the ac-
curacy of the formfactor calculation by using the analytical approch described by [BAUM89].

The use of the hemicube or the analytical method still su�ers from the problem that
the formfactors and the visibilities are determined using the \shooting"-patch as projection
center. This leads to noticeable artifacts. A better method is to calculate this information
directly for each receiver.

In the following sections we assume that we have a number of processors with local
memory and an interconnecting network.

2



2.2 Parallel Progressive Re�nement

This paper presents an approach based on the calculation of formfactors by raytracing as
described by Wallace [WALL89]. Raytracing is used to determine the visible parts of the
\shooting"-patch as seen from each patch. The formfactor of these visible parts is then
calculated using the analytical solution to the contour integtral. The visibility is determined
by subdividing the \shooting"-patch regularily into M parts and tracing a ray from the
receiver to each of these parts.

We distribute the patches evenly among the N processors, and each processor computes
the radiosity for it's n

N
patches. But for the visibility computation we have to store the

complete set of patch geometries on each processor also. Clearly the maximum number of
patches this algorithm is able to handle is then limited by the available memory on each
processor. In section 3 we will show how this algorithm can be extended for larger numbers
of patches.

The following steps are performed until the solution has converged:

� All processors send their \best" patch to the master processor, i.e. the patch which has
the most unshot radiosity.

� The master processor chooses the globally best patch as \shooter" and sends this infor-
mation to all processors. Note that the \shooter"-geometry and the associated radiosity
values are distributed to all processors in this step also.

� The following steps are performed on all processors in parallel:

{ For each receiving patch we determine the visibility of the \shooting"-patch by
tracing rays to the shooter. Each ray is intersected with all other patches. For
the visibile parts we calculate the geometric formfactor and add the resulting
contribution to the receiver radiosity.

In contrast to many previously presented algorithms, we do not have to update radiosity
values on other processors. The only communication overhear is generated by the selection
of the \shooter"-patch once every iteration step.

2.3 Rendering

After the solution has converged we render the scene. This can be done e.g. by sending all
patches to the workstation and using its hardware z-bu�er to render the picture. We did not
address the problem of parallel rendering or rendering the solution after each iteration step,
as we feel that the communication costs are too high.

Parallel rendering could be done as follows: We partition the picture into N parts and
assign each part to one of the N processors, then we distribute all patches to all processors
and every processor renders the patches into it's z-bu�er. The load distribution will be quite
uneven for this method, as di�erent parts of the picture will \contain" signi�cantly di�erent
numbers of patches. This has been reported by Feda [FEDA91] but they also propose a
scheme which assigns every N -th scanline to a processor thus distributing the load much
more evenly.

We used the following scheme: After every p-th iteration (p is user selectable), we send
all patches to the workstation, which uses it's hardware z-bu�er to render the picture.

3



3 Parallel Visibility Calculation

In section 2.2 we presented a parallel progressive radiosity algorithm. The major shortcoming
of this method is that the number of patches is limited by the available memory on each
processor. This is due to the fact, that we have to intersect each visibility ray with all other
patches to determine the visibility of the \shooter"-patch. Therefore all patches have to be
stored on all processors. When there is not enough memory to store all patches on a processor
one possible strategy is to retrieve the patch geometries from other processors (e.g. [FEDA91],
[CHAL91]). But the results are not satisfactory due to the big amount of data, which has to
be transfered.

Instead of transfering patches to compute visibility, we transfer the visibility information
instead. We assume in the following, that we use a �xed subdivision of the \shooter"-patch,
into M (e.g. 16 or 64) parts. For every part we determine the visibility by tracing a ray to
it's center. The ratio of all visibile parts to the total number of parts gives an approximation
to the visiblity of the \shooter"-patch from a certain point. Assume further that we store
the visibility information for the \shooter"-patch in a bit vector of length M .

If we distribute the patches of the scene evenly onto two processors we can calculate
the visibility information of the \shooter"-patch in parallel. Every processor calculates the
visibility of the \shooter"-patch using its part of the patches of the scene. The binary AND
operation of two visibility vectors gives then the combined visibility information for the
combination of the respective patches. I.e. if a certain part of the \shooter"-patch is visibile
on both processors, it is also visible with respect to the union of the patch sets. If a part is
invisible on one or both processors, it is invisible with respect to the union too.

Using this method we are able to compute the visibility information for the algorithm
given in section 2.2 in parallel. Assume again that all patches are distributed evenly among
the N processors and that the processors are arranged in a ring topology which will be used
as a pipeline for computing visibility information.

A processor which wants to compute the visibility information of the current \shooter"-
patch from a sampling point computes its visibility vector and transfers the point and its
associated visibility vector to the next processor. This processor generates the appropriate
rays and intersects them with its set of patches and computes the local visibility vector. Then
it performs a binary AND of the local and the received visibility vector and sends the result
on to the next processor.

In the beginning each processor generates its packets of sampling points and sends them
to the next processor in the ring. Then it waits for incoming sample packets from the ring
pipeline and processes these in turn.

When a packet returns to the original processor we count the bits, which are set, and use
this to compute the (approximate) visibility of the \shooter"-patch and also the respective
formfactor. To reduce the communication overhead, we transfer the points and the associated
visibility vectors, in blocks of e.g. 200 between processors.

3.1 Optimized Parallel Visibility Calculations

The method presented in the previous chapter has the drawback that one packet has to be
transfered around the complete ring of N processors to compute the visibility information
for the respective points.

As the patches are distributed evenly among the N processors every processor has (ap-
proximately) the same amount of free memory. To use this memory we organize the processors

4



into R seperate rings and distribute the patch geometries in each ring. Then a processor holds
the patches it computes radiosities for and additionally a set of patch geometries for visibil-
ity computations. I.e. with N processors organized into R rings we store the scene R + 1
times. Once distributed across all processors (for the radiosity computations) and R times
distributed across each ring (for the visibility computations).

3 2

4

6 5

1

12

56 34 56 34

12

Figure 1: Sample patch assignements for 2 rings with 3 processors each.

In �gure 1 an example patch assignment for a scene consisting of 6 patches onto 2 rings
with 3 processors each is shown. The bold numbers denote patches for which radiosity is
calculated and the italic numbers denote patch geometries stored for visibility caluclations.

Using this method each packet of sampling points has to be transfered only around a ring
of N

R
processors. This speeds the algorithm signi�cantly up.

Clearly the maximum number of rings R is dependent on the number of patches in the
scene. If we can store all patches on one processor the scheme degenerates to the algorithm
of section 2.2. If we have a huge number of patches, and are only able to store n

N
patches

on one processor, we degenerate to the algorithm of section 3. In practice we will use the
maximum number of rings we are able to allocate for a given scene, as this gives the best
performance.

3.2 Adapting the Precision of the Visibility Computation

Using a �xed subdivision of the \shooter"-patch has the disadvantage that all visibilities are
computed with the same precision. When e.g. the maximum of the energy which may be
transfered between \shooter"-patch and sampling point is small there is no need for a precise
formfactor.

If we calculate the geometric formfactor and the maximum energy transfered between the
sampling point and the \shooter"-patch in advance we obtain a measure on how precise we
need to calculate the visibility. Using this we can calculate how many rays we have to send
to the \shooter"-patch and therefore deceide which subdivsion of the \shooter"-patch to use.
This information is added easiliy to the packets of sampling points.

3.3 Dynamic Load Balancing

One problem of the parallel visibility computation method is that the load will be distributed
unevenly among the processor, due to the di�erent \visibilities" of di�erent parts of the scene.
When using an e�ciency scheme (e.g. bounding volumes) to speed up the ray casting this
e�ect will be much more noticeable. E.g. the walls of a room will be tested more often against

5



a ray compared to a small complicated object inside the room. A lot of rays will miss the
bounding volume of the small object and therefore potential timeconsuming intersections will
not be performed.

In each ring we measure how much time each of the processors took to calculate visi-
bilities. When one processor has a signi�cant higher load than the other processors we can
redistribute a part of its patch geometries to other, less loaded, processors in the ring, there-
fore \lightening" it's load. This redistribution is done before the next \shooter"-patch is
selected.

4 Patches and Elements

If the patches are too big, we will see jagged shadow boundaries and other artifacts. One
solution is to use smaller patches, therefore increasing their number, which increases the
memory and cpu time consumption. But for the \shooting" of radiosity we can safely use
bigger patches.

The two-level hierarchy of patches proposed by [COHE86] is a very good means to over-
come this problem. Each patch is subdivided into elements. The radiosity is then computed
for all elements, and these elements are used also for display purposes. The average of the
element radiosities is used as the patch radiosity for the \shooting" operation. This method
proved to give satisfactory results in practice.

As the formfactor of the \shooting" patch is now needed for every element we have to
compute more visibilities, therefore we will have to communicate more frequently. For the
visibility computation we still have to store only the patch geometry for the intersection tests.

Additional communication overhead will also appear during the rendering phase, as all
elements have to be transfered (and rendered).

For a better load distribution we distribute the patches so that an approximately equal
number of elements has to be handled by each radiosity processor. Also we distribute the
patches randomly among the processors to avoid situations where a processor has only patches
of e.g. an unlit part of the scene.

5 Implementation and Results

Our approach was implemented on an nCube2S with 256 processors, which is a distributed
memory computer where the nodes are connected with a hypercube topology network. The
performance of a single processor is around 3 MFLOPS.

As a basis we used a progressive radiosity program for patches and elements [ST�U93]
(sections 1.1, 4). We parallelized the algorithm as desribed in section 2.2 and implemented
the parallel visibility calculation method (section 3). For practical reasons we used the �rst
radiosity processor as master processor. The ray casting was done using a BSP-tree to speed
the intersection test (e.g. [SUNG92]).

In the following tables N denotes the number of processors used and R denotes the
number of rings used for the visibility calculations. We used a scene describing a simple room
consisting of 4738 patches with a total of 17251 elements. Due to the memory constraints at
least 4 processors are needed to store the scene. All times are given in seconds for the �rst
iteration of the algorithm to complete (i.e. one \shooting"-operation).

Initially we implemented the primitive parallel visibility computation method (section 3)
which uses only one ring.

6



N R t

4 1 158

8 1 152

16 1 105

32 1 54

64 1 45

128 1 38

256 1 37

The variations in the timings are due to the di�erent distributions of the patches for the
visibility calculations.

Then we tested the program using the maximum number of rings possible. I.e. for this
particular scene every ring consisted of 4 processors.

N R t

4 1 158

8 2 78

16 4 65

32 8 36

64 16 17

128 32 13

256 64 7

The last result (256 processors: 7 seconds) shows that we can perform radiosity iterations
at near interactive speed. As the processors of the nCube are quite slow we believe that this
method will provide interactive speed on a machine of the latest generation.

Analyzing detailed timings further we found that the time a processor is busy depends
also on the dimension of the rings. The values given in the next table describe how long the
slowest and fastest processor were busy, and the ratio.

N R slowest fastest ratio

64 1 45 29 0.644

64 2 32 15 0.468

64 4 27 11 0.407

64 8 24 8 0.333

64 16 17 5 0.294

This behaviour result from slow visibility computations on one processor blocking the
whole ring.

Analyzing the processor loads for a complete picture we found that the pattern of uneven
load distributions is consistent for almost all iterations. I.e. the slowest processor for one
iteration is also almost certainly the slowest processor for all other iterations, and so forth.
The reason for this behaviour was outlined in section 3.3.

Preliminary results with the load balancing method presented in section 3.3 showed that
we can increase the ratio between the slowest and fastest processor to about 0.8 for subsequent
iterations. The improved load balance results also in further speedups for the total completion
time.

7



6 Conclusion and Further Extensions

The newly presented method has a number of advantages.

� Formfactor calculation is done by raytracing, which proved to deliver much more accu-
rate results than the hemicube method.

� There is no need to distribute radiosity values after formfactor calculation, as in pre-
vious parallelization attempts. All needed calculations are done locally, except for the
visibility tests, and the shooter selection.

� The parallel visibility calculation method allows us to render scenes where the memory
to store the patches and elements exceeds the available memory per processor node at
reasonable times.

� The method allows adaptive subdivision of the surfaces. Each radiosity processor can
decide locally if an element is not uniformly lit and subdivide it accordingly. The uneven
load which may result from the di�ering number of element on the processors can be
redistributed by transfering some patches and their elements and radiosity values to
other processors. The strategy of transfering patches and the associated elements to
other processors can also be used if we run out of memory while subdividing adaptively.

Also we are looking into applying the parallel visibility computation method to other
problems.

Finally the incooperation of a discontinuity meshing algorithm look feasible and should
improve the quality of the results further.

Acknowledgements

The authors thank J. Volkert for helpful discussions about parallel algorithms, and E. Spiegl
for her good suggestions.

References

[BAUM89] Daniel R. Baum, Holly E. Rushmeier, James M. Winget, \Improving Radiosity
Solutions through the Use of Analytically Determined Form-Factors", Computer
Graphics (SIGGRAPH '89 Proceedings), July 1989.

[BAUM90] Daniel R. Baum, James M. Winget, \Real Time Radiosity Through Parllel Pro-

cessing and Hardware Acceleration", Computer Graphics (SIGGRAPH '90), July
1990.

[CHAL91] Alan G. Chalmers, Derek J. Paddon, \Parallel Processing of Progressive Re�ne-
ment Radiosity Methods", in Proceedings of the Second Eurographics Workshop
on Rendering, May 1991.

[COHE85] Michael Cohen, Donald P. Greenberg, \The Hemi-Cube: A Radiosity Solution

for Complex Environments", Computer Graphics (SIGGRAPH '85 Proceedings),
August 1985.

8



[COHE86] Michael Cohen, Donald P. Greenberg, Dave S. Immel, Phillip J. Brock, \An E�-

cient Radiosity Approach for Realistic Image Synthesis", IEEE Computer Graph-
ics and Applications, March 1986.

[COHE88] Michael Cohen, Shenchang Eric Chen, John R. Wallace, Donald P. Greenberg,
\A Progressive Re�nement Approach to Fast Radiosity Image Generation", Com-
puter Graphics (SIGGRAPH '88 Proceedings), August 1988.

[FEDA91] Martin Feda, Werner Purgathofer, \Progressive Re�nement Radiosity on a Trans-
puter Network", in Proceedings of the Second Eurographics Workshop on Ren-
dering, May 1991.

[GORA84] Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, Bennett Battaile,
\Modelling the Interaction of Light Between Di�use Surfaces", Computer Graph-
ics (SIGGRAPH '84 Proceedings), July 1984.

[MALL88] Thomas J.V. Malley, \A Shading Method for Computer Generated Images", Mas-
ter's Thesis, University of Utah, June 1988.

[RECK90] Rodney J. Recker, David W. George, Donald P. Greenberg, \Acceleration tech-

nique for Progressive Re�nement Radiosity", Computer Graphics (SIGGRAPH
'90), July 1990.

[SILL89] Francois Sillion, Claude Puech, \A General Two-Pass Method Integrating Spec-

ular and Di�use Reection", Computer Graphics (SIGGRAPH '89 Proceedings),
July 1989.

[SILL91] Francois X. Sillion, James R. Arvo, Stephen H. Westin, Donald P. Greenberg, \A
Global Illumination Solution for General Reectance Distributions", Computer
Graphics (SIGGRAPH '91 Proceedings), July 1991.

[SUNG92] Kelvin Sung, Peter Shirley, \Ray Tracing with the BSP Tree", Graphics Gems
III, Academic Press, 1992.

[ST�U93] W. St�urzlinger, \FIRE - Fast Illumination Rendering Environment", Technical
Report, Institute for Computer Science, University of Linz, Austria, December
1993.

[TAMP91] F. Tampieri, D. Lischinski, \The Constant Radiosity Assumption Syndrome", in
Proceedings of the Second Eurographics Workshop on Rendering, May 1991.

[WALL89] John R. Wallace, Kells A. Elmquist, Eric A. Haines, \A Ray Tracing Algorithm

for Progressive Radiosity", Computer Graphics (SIGGRAPH '89 Proceedings),
July 1989.

9


