
ABSTRACT

The radiosity method models the interaction of light between dif-
fuse surfaces, thereby accurately predicting global illumination
effects. Due to the high computational effort to calculate the trans-
fer of light between surfaces and the memory requirements for the
scene description, a distributed, parallelized version of the algo-
rithm is needed for scenes consisting of thousands of surfaces.

We present several load distribution schemes for such a paral-
lel algorithm which includes progressive refinement and adaptive
subdivision for fast solutions of high quality. The load is distrib-
uted before the calculations in a static way. During the computa-
tion the load is redistributed dynamically to make up for individual
differences in processor loads. The dynamic load balancing
scheme never generates more data packets than the original algo-
rithm and avoids overloading processors through actions taken by
the scheme.

CR Categories and Subject Descriptors:I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism.

1 Introduction

Radiosity has become a popular method for image synthesis due to
its ability to generate images of high realism. It was first intro-
duced to computer graphics by Goral et al. [11]. Further research
resulted in the progressive refinement method, which quickly pro-
duces good approximations of the final solution [8]. For recent
developments see [9],[20].

Common to all these methods is the representation of the sur-
faces of the environment by a mesh of quadrilaterals and triangles.
These “patches” are used to store the radiosity on the respective
part of the surface. Other surface representations (eg. freeform sur-
faces, CSG models, ...) must be approximated by triangles.

A formfactor is a value describing the “influence” of two
patches onto each other. These formfactors were first calculated by
the use of a hemicube [6]. A hemicube is placed around the centre
of a patch and all other patches are projected onto its surfaces. The

projected area gives an estimate for the formfactor between the
patches. As this estimate of the formfactors may be inexact even
for simple cases [1], other methods for computing the formfactors
were suggested. Sillion [18] used a single plane for the projection;
Wallace [26] introduced ray-traced formfactors; Malley [14] pro-
posed a stochastic method.

During the calculation of the formfactors the visibility calcula-
tions account for most of the computation time of the radiosity
method (e.g. 70 - 95%) and the memory requirement increases
with the number of patches. These problems led to the develop-
ment of parallel implementations of the progressive refinement
radiosity method [2], [16], [10], [5].

This paper presents a MIMD implementation of the radiosity
method suitable for massively parallel computers. In section 2 the
basic parallel progressive refinement algorithm is discussed which
is generalized for distributed visibility calculations in section 3.
Static and dynamic load balancing schemes are introduced in sec-
tion 4 and section 5 the timings of which are thereafter compared
to each other and to the original version in section 6.

1.1 Progressive Refinement

The radiosity method partitions the surfaces of the scene in small,
flat patches and computes the illumination for each of those
patches. The radiosity of a patch is determined by the radiosity it
emits directly plus all light that is reflected. This is described by
the radiosity equation

where
• n is the number of the patches.

• Bi is the radiosity of thei-th patch.

• Ei is the emitted radiosity of thei-th patch.

• ρi is the reflectivity of thei-th patch.

• Fi,j is the formfactor from patchi to patchj.

The linear equation system defined above can be solved with an
iterative Gauss-Seidel solution method and converges quickly in
practice. As the memory requirement for the formfactor matrix is
proportional ton2 this method becomes impractical for largern
(n > 10000). Also the computational effort to compute allFi,j
becomes prohibitively large.

The progressive refinement method [8] uses a reordering of the
solution process which just needs to calculate (and store) one col-

Bi Ei ρi Fi j, Bj
j 0=

n 1–

∑+=

Load Balancing for a Parallel Radiosity Algorithm

W. Stürzlinger1, G. Schaufler1 and J. Volkert1

GUP, Johannes Kepler Universität Linz, AUSTRIA

1 Kepler University,Altenbergerstr.69,A-4040 Linz,Austria/Europe
[stuerzlinger | schaufler | volkert]@gup.uni-linz.ac.at

umn of the matrix per iteration step. The patch with most unshot
radiosity is selected as the shooter and its radiosity is distributed to
all other patches in the environment by calculating form factors
from the shooter to the receiving patches. While the solution con-
verges an intermediate picture can be displayed after each iteration
step.

1.2 Patches and Elements

If the patches are too big, the quality of the approximation of the
illumination function across the objects’ surfaces will be poor. One
solution is to use smaller patches which increases both memory
and cpu time consumption. However, for shooting the radiosity
bigger patches have been found to give sufficiently accurate results
and, therefore, a two-level hierarchy of patches and elements was
proposed by Cohen et al. [7]. Each patch is subdivided into ele-
ments. The radiosity is computed for all elements which are used
during display of the solution. The average of the element radiosi-
ties is used as the patch radiosity for shooting.

1.3 Adaptive Subdivision

Adaptive subdivision [9] extends the two level hierarchy of patches
and elements to a hierarchy of several levels: whenever the radiosi-
ties at the corners of an element differ by more than a given thresh-
old the element is subdivided into several smaller elements and
only the influence of the current shooter must be recalculated for
the new elements. As a result more elements are generated in areas
of large illumination variations (shadow boundaries) and a better
approximation of the illumination function is achieved.

2 Parallelization of the Progressive Refinement
Method

Though the progressive refinement method converges much faster
than the conventional radiosity method its computational complex-
ity still makes a parallel implementation desirable.

2.1 Previous Research

Parallelizations of the progressive refinement method have been
proposed by Baum [2] for a multiprocessor workstation and
Recker [16] for a cluster of workstations. Feda [10] and Chalmers
[5] presented an implementation on a transputer network with local
memory on each transputer.

Both the hemicube used by Baum and Feda and the analytical
method used by Chalmers and Recker suffer from the problem that
the formfactors and the visibilities are determined using the
shooter as the projection centre which leads to noticeable artifacts.
A better method is to calculate formfactors and visibilities directly
for each receiver.

Even most recent implementations such as those by Capin et
al.[3], Ng et al. [15] and Lamotte et al. [13] are not easily extended
to parallel computers of several hundred processors. Capin uses
one ring of processors where round trip times become prohibitively
large. Ng and Lamotte use master-slave approaches where the mas-
ter soon becomes the bottle neck.

In the following sections we assume that we have a number of
processors with local memory and an interconnecting network.

2.2 Parallel Progressive Refinement

This paper presents an approach based on the calculation of form-
factors by raycasting as described by Wallace [26]. Raycasting is
used to determine the visible parts of the shooter as seen from each

receiving patch. The formfactor of these visible parts is then calcu-
lated using the analytical solution to the contour integral. The visi-
bility is determined by subdividing the shooter regularly intoM
parts and casting a ray from the receiving patch to each of these
parts.

We distribute then patches evenly among theN processors,
and each processor computes the radiosity for it’s patches by
computing the energy received from the shooter. The shooter is
selected by a global maximum search and is broadcast by the mas-
ter to all other processors.

For visibility computations we must store the complete scene
geometry on each processor. Therefore, the maximum number of
patches which can be handled by the algorithm is limited by the
available memory on each processor. In section 3 we will show
how this algorithm can be extended for larger numbers of patches.

The following steps are performed until the solution has con-
verged:

• All processors send their local shooter to the master processor,
i.e. the patch which has the most unshot radiosity.

• The master processor chooses the global shooter and sends this
information to all processors. Note that the shooter-geometry
and the associated radiosity values are distributed to all proces-
sors in this step also.

• The following steps are performed on all processors in parallel:

For each receiving patch we determine the visibility of the
shooter by casting rays to the shooter. Each ray is inter-
sected with all other patches. For the visible parts the geo-
metric formfactor is calculated and the resulting
contribution is added to the receiver’s radiosity.

In contrast to many previously presented algorithms, no radiosity
values need to be updated on other processors. The only communi-
cation overhead is generated by the selection and distribution of
the shooter once for each iteration step and can be optimized using
the topology of the parallel machine.

After everyp-th iteration (p is user selectable) an intermediate
picture can be rendered by sending all patches to a graphics work-
station. This image generation is not discussed further in this paper.

3 Visibility Determination

The major shortcoming of the algorithm presented in section 2.2 is
that the number of patches is limited by the available memory on
each processor because the visibility of the shooter must be deter-
mined locally.

3.1 Parallel Visibility Calculation

When there is not enough memory to store all patches on one pro-
cessor the data transfer overhead becomes prohibitively large if
patch geometries are retrieved from other processors [10], [5].

Instead of transferring patches to compute visibility, we trans-
fer the sampling points with respective visibility information.
Using a fixed subdivision of the shooter intoM (e.g. 16 or 64) parts
the visibility for each part is determined by casting a ray to the
part’s centre. The ratio of all visible parts to the total number of
parts gives an approximation to the visibility of the shooter from
the sampling point. This visibility information for each sampling

n
N

point can be stored in a bit vector of lengthM (see also figure 1).

Figure 1. Parallel Visibility Computations

Once the scene patches are evenly distributed among the available
processors, every processor can calculate the visibility of the
shooter using its set of patches. The binary AND operation of the
visibility vectors of all processors determines the visibility of the
shooter with respect to the whole scene.

Stürzlinger et al. [24] proposed to arrange the processors in a
ring which is used as a pipeline for packets of sampling point. Each
processor generates a packet, sends it around the ring, computes
the local visibility of the samples in the packet and ANDs it to the
visibility vectors in the packet. When the packet returns to the pro-
cessor it originated from the local visibility is ANDed and the form
factors can be calculated.

3.2 Optimized Parallel Visibility Calculations

As long as the processors have enough local memory so that not all
of them are needed to store the samples and the scene, more than
one ring can be used in parallel. The processors are organized into
several separate rings and the patch geometries are stored once in
each ring. One processor holds the patches and elements it com-
putes radiosities for and a set of patch geometries for visibility
computations.

Figure 2. Sample patch assignments for 2 rings with 3 processors

In figure 2 an example patch assignment for a scene consisting of 6
patches onto 2 rings with 3 processors each is shown. The bold
numbers (p1 - p6) denote patches for which radiosity is calculated
and the italic numbers (g1-g6) denote patch geometries stored for
visibility calculations.

The geometric formfactor and the maximum energy trans-
ferred between the sampling point and the shooter gives a measure
how precise visibilities need to be calculated and how many rays
must be cast to the shooter.

3.3 The Global BSP-Tree

The overwhelming amount of computation carried out on all pro-

cessors is the intersection of rays with scene patches to determine
the visibility of the shooter. A BSP-tree is commonly used to speed
up the intersection of rays with a large number of polygons. Poly-
gons are classified as lying in one or more of the subspaces defined
by the BSP-tree. Only those polygons situated in subspaces pene-
trated by the ray must be considered (see e.g. [25]).

Caspary et al. [4] introduced a new method of storing such a
BSP-tree in the local memory of processors of a parallel computer.
The upper part of the tree from the root node down to some prede-
termined level of subdivision is stored on all processors. This part
of the BSP-tree is referred to as the global BSP-tree. The subtrees
below the global BSP-tree are each stored on one processor only.
All other processors replace the subtree with a reference pointing
to the processor storing the respective subtree.

Figure 3. The global BSP-tree

Note that one processor may store more than one subtree and that
the global BSP-tree is not balanced (figure 3).

During setup the global BSP-tree is generated on the host com-
puter and broadcast to all processors. This global BSP-tree defines
a subdivision of the scene-space which is the same on all proces-
sors. Now the patches are broadcasted to the processors as well and
all processors in parallel filter out the patches which intersect their
subspaces and insert them into their local subtree.

The global BSP-tree allows each processor to determine for
any ray which processors must contribute to the intersection of the
ray with all polygons in the global BSP-tree. On the ring-topology
of processors introduced by Stürzlinger [24] it can be calculated in
advance to which processors in the ring the packet must be sent
and which can be left out. This information is added to the contents
of the packet as a processor vector.

3.4 Processor Vectors

The processor vector is an array of flags in the sample packet con-
taining one flag for each processor in the ring. If the flag for a pro-
cessor is set, the sample packet must be sent to and processed by
the corresponding processor. By the use of the global BSP-tree the
processor vector can be computed by any processor, in particular
by the processor generating the sample packet. Whenever a packet
is sent around the ring the next processor is determined by finding
the next set flag in the processor vector, thereby leaving out proces-
sors which do not influence the visibility bit-vector of the samples
in the packet and reducing the communication in the rings.

Two user defined limits determine the maximum number of
samples in one packet and the maximum number of processors
which must be visited in the ring. If one of the limits is exceeded,
no more samples are added to the packet and the packet is pro-
cessed by the ring.

4 Static Load Balancing

At the begin of each iteration all processors are synchronized by
the selection of the shooting patch. As a result the slowest proces-
sor dictates the total iteration time. Load Balancing aims at distrib-
uting storage and computational demand equally among processors

1 11 1
1 10 1
1 00 1
1 00 0

1 11 1
1 01 0
0 00 1
0 10 1

&

1 11 1
1 00 0
0 00 1
0 00 0

Shooter

Polygons

Patch i

p1

p3 p2

g1 g2

g3 g4g5 g6

p4

p6 p5

g1 g2

g3 g4g5 g6

Subtree
on Proc 0

Subtree
on Proc 1

Subtree
on Proc 1

Subtree
on Proc 0

Subtree
on Proc 3

Subtree
on Proc 2

so that the iteration time is approximately the same on all proces-
sors. Static load balancing distributes the data needed during com-
putation in a way so that comparable load can be expected on all
processors.

4.1 Static Load Balancing of Radiosity Samples

Supposed that each radiosity element causes the same amount of
computation equal load can be expected on each processor if each
processor computes the same amount of element radiosities. As
different patches are subdivided into different numbers of elements
it is insufficient to only assign the same amount of patches to one
processor. Patches with large numbers of elements must be split
into smaller ones to allow an even distribution of elements among
processors [23]. This necessity slightly increases the total number
of patches but results in considerable gain in processing speed as
equal amounts of computation are initially assigned to each proces-
sor (see table 2 in section 6 for timings of this load balancing
scheme applied in combination with the scheme described in the
following section 4.2).

When adaptive refinement is used the balance of computation
will be destroyed as new elements are introduced on selected pro-
cessors. It cannot be determined in advance (during setup) where
such refinement will occur and, therefore, static load balancing is
not suitable to compensate for the resulting imbalance. A dynamic
scheme is needed which is introduced in section 5.2.

4.2 Static Load Balancing of Visibility Complexity

For each sample on an element the visibility of the shooter must be
determined. The complexity of these visibility tests is primarily
due to the number of polygons stored in one processors local BSP-
trees. Therefore, the size of the global BSP-tree must be chosen big
enough, so that approximately the same number of patches is
assigned to each processor by selecting the local BSP-trees stored
on it.

The selection of the global BSP-tree size is subject to a mem-
ory vs. distribution quality trade-off: the bigger the global BSP-
tree, the lower variations in the distribution of polygons onto pro-
cessors can be achieved. At the same time a bigger global BSP-tree
results in more memory consumption on each processor as the glo-
bal BSP-tree must be stored on each of them. The time savings
attained with static load balancing of visibility complexity are
summarized in table 2 in section 6 and should be compared with
table 1 which lists the calculation times without static load balanc-
ing.

However, the time needed to compute the visibility tests may
still vary when large subtrees of the processor’s local BSP-tree can
be classified as not being intersected by the ray. Such variations
cannot be compensated for by static load balancing as they are not
predictable at the beginning of the computation. Moreover, adap-
tive refinement can introduce an arbitrary number of additional ele-
ments on any processor which increases this processor’s load
significantly.

5 Dynamic Load Balancing

Dynamic load balancing tries to influence individual processors
iteration times by transferring work from loaded to less loaded pro-
cessors in order to speed up the completion of one iteration.

5.1 Dynamic Load Balancing of Visibility Tests

As a first attempt dynamic load balancing of visibility tests was
tried but did not yield satisfactory results for reasons which were
not evident from the beginning. In this scheme the time needed to

process all sample packets arriving at a processor in a ring is used
as a measure for the load of the processor. After each iteration
loaded processors are determined and an adequate part of their
work for the next iteration is transferred to less loaded processors.

As the computational load is primarily due to visibility tests
the distribution of the patches must be rearranged to perform
dynamic load balancing of visibility tests. However, changing the
distribution of patches among processors and rearranging the BSP-
tree is a very costly operation. Moreover the load of the last itera-
tion is rarely a good estimate for the load of the next iteration as a
new shooter is selected for each iteration and the spatial relations
of samples and shooter change completely. The implementation of
such a dynamic load balancing scheme of visibility tests did
always slow down the iterations and, therefore, no timings are
given in section 6.

5.2 Dynamic Load Balancing of Sample Packets

A better possibility for dynamic load balancing computation from
loaded processors to processors which already finished the current
iteration. In this way the load of the current iteration is used to
guide the balancing of computations. Moving the computation of a
sample packet from one ring to another means transferring all the
visibility computations for this packet to the other ring at very little
cost: all the information for these computations are already avail-
able on the other ring and this ring also has the available capacity
to process the packet as the processor is already idle and will not
generate any further packets itself.

The idea of balancing sample packets is to make use of proces-
sors which have already finished generating sample packets in the
current iteration and identify them as idle. An idle processors in
one ring request sample packets from loaded processors in other
rings, has them processed in its own ring and sends them back to
the loaded processor. These steps are repeated until all processors
have finished the current iteration.

The figure below depicts the involved steps in detail: when pro-
cessor A in ring 1 has finished the calculations on the last sampling
package generated by it, it sends an “Idle” message to a processor
B in a randomly chosen other ring but at the same position in the
ring. If Processor B still has unprocessed sample packets it sends a
packet P to processor A. Processor A initializes the visibility com-
putations of packet P, sends it around the ring and returns it to Pro-
cessor B afterwards. Processor A repeats the random polling until
all processors have finished the current iteration.

The method of random polling was chosen as the work of
Kumar et al. [12] shows that this method is in general superior to
all other methods considered by them in a comprehensive survey,
especially when used with massively parallel computer systems.

Figure 4. Dynamic Load Distribution of Sample Packets

As idle processors do not generate any packets themselves but only

Ring 1 Ring 2

Processor

A

➀ “Idle”

➁ Packet P

➃ Processed P

➂ Calculation
of Visibility

for P

A
B

Idle Processor

Loaded Processor

B

introduce one packet from another ring at a time this scheme guar-
antees that a ring with idle processors is not overloaded by too
many packets from other rings. The amount of packets circulating
in a ring is not increased by this dynamic load balancing scheme as
there are never more packets in the ring than processors.

Processors which are polled for load balancing packets and are
already idle themselves respond with a list of processors which
they already found to be idle (including their own id) so that
unnecessary random polling is minimized and only introduces
moderate communication overhead. A parallel termination algo-
rithm determines when the global shooter selection can initiate for
the next iteration.

Table 3 in section 6 shows the time advantage of this dynamic
load balancing scheme when compared to the tables before and
table 4 gives timings for dynamic load balancing in combination
with full static load balancing.

6 Implementation and Results

Our approach was implemented on an nCube2S with 256 proces-
sors - a distributed memory computer the nodes of which are con-
nected with a hypercube topology network. The performance of a
single processor is approximately 3 MFLOPS.

As a basis we used the progressive radiosity program described
by Stürzlinger et al. [21]. The algorithm has been improved to use
a global BSP-Tree (described in section 3.3) and it includes static
load balancing of radiosity samples (see section 4.1) and of visibil-
ity complexity (see section 4.2). Moreover two dynamic load bal-
ancing schemes have been implemented (section 5.1 and section
5.2) of which the latter performs very well both in combination
with and without static load balancing. The tests have shown
dynamic load balancing to be particularly useful with adaptive
refinement as it increases the number of certain samples in a way
not predictable before the begin of the calculations [17].

All times were measured using sample packets of 50 samples
each. In the following tables and figuresN denotes the number of
processors andR denotes the length of the rings. A scene of a sim-
ple living room consisting of 4738 patches with a total of 17251
elements was used. Due to the memory constraints it took at least
rings of 4 processors to store the scene and at least a total of 8 pro-
cessors to store all the samples. All timings are given in seconds
for the average of the first four iterations of the algorithm to com-
plete. Later shooting operations generally take less time as less
energy is distributed. Configurations where the processors ran out
of local memory are marked “out of mem”. Table 1 summarizes
run-times with load balancing disabled.

Table 2 gives the run-times of the algorithm when static load bal-

ancing has been performed before the iterations are started.

The run-times for dynamic load balancing (described in section
5.2), i.e. without static load balancing are summarized in table 3.

Table 4 shows the run-times for the first iteration of the algorithm
when both static and dynamic load balancing are enabled. The val-
ues given in the diagonal of the table are equal to those given in
table 2 as no dynamic load balancing is possible with just one ring.
However, with all other configurations the combination of static
and dynamic load balancing yields the best results.

Test runs with a more complex scene showed that the 4738 patch
scene is too small to demonstrate the capabilities of this dynamic
load balancing scheme. Moreover with adaptive subdivision of sur-
faces static distribution of patches to processors are outdated by the
new patches introduced by the adaptive subdivision algorithm. The
dynamic load balancing scheme presented in this paper made a
speed-up of 26% possible for the radiosity simulation of a scene
with approximately 60000 patches and approx. 100000 (131000)
elements before (after) four iterations (see table 5). As the undis-
tributed energy decreases generally with each iteration the subdivi-
sion criterion is met less often and the rate of element subdivision

N \ R 4 8 16 32 64 128 256

4 out of mem

8 out of mem 155

16 out of mem 79 129

32 35.5 51 74 117.5

64 29.5 38.3 45.3 66.3 113.3

128 31.5 39 46.5 49 67.5 108.5

256 29.5 36 39 47 67.3 74.8 81

Table 1: No Load Balancing (N=#processors, R=#rings)

N \ R 4 8 16 32 64 128 256

4 out of mem

8 out of mem 155

16 out of mem 79.5 129

32 25 37.5 54 82.5

64 13.3 20.5 28.5 48.3 74.8

128 7 8.5 13 21.5 36.5 57

256 5 8.3 7.8 9 13.3 16.3 28.3

Table 2: Static Load Balancing (N=#processors, R=#rings)

N \ R 4 8 16 32 64 128 256

4 out of mem

8 out of mem 155

16 out of mem 73.3 129

32 32.3 39.3 65.3 117.5

64 20.5 21.5 34.3 62.8 113.3

128 15.5 14.5 20 33 56.8 108.5

256 11.5 13.3 11.3 15 28 75.5 81

Table 3: Dynamic Load Balancing (N=#processors, R=#rings)

N \ R 4 8 16 32 64 128 256

4 out of mem

8 out of mem 155

16 out of mem 73.5 129

32 22.8 34.8 50 82.5

64 12.5 19.5 25.3 44 74.8

128 6 7.8 12 21.5 36.5 57

256 4.8 7.8 7.5 8.5 12.3 16 28.3

Table 4: Static and Dynamic Load Balancing (N=#processors,
R=#rings)

decreases as well.

The following two diagrams allow to compare the speed-up of the
different load balancing schemes for configurations with rings of 4
processors from a total of 32 to 256 processors and for 8 processors
from a total of 8 to 256 processors. The speed-up was calculated in
relation to an extrapolated timing using a serial version of the pro-
gram running on a Sun 4/330. Considering the MFLOPS perfor-
mance of both the Sun and one processor node of the parallel
computer the extrapolated runtime for this serial version on a sin-
gle processor node is estimated to be 242 seconds. This work-
around was used because the limited memory available on one
node of the nCube2S did not allow to obtain timings for a serial
run.

Figure 5. Comparison of speed-up with and without static/dynamic
load balancing for R = 4

Figure 6. Comparison of speed-up with and without static/dynamic
load balancing for R=8

As one can see from the diagrams static load balancing yields good
results in general, if it fails, however, dynamic load balancing fur-
ther improves the performance even further (cf. figure 5,
128 CPUs).

7 Conclusions

This paper reports on several major improvements over the parallel
radiosity algorithm described by Stürzlinger et al. [24]. First a glo-
bal BSP-Tree has been introduced as a data structure to speed up
ray-patch intersections and to optimize the routing of sample pack-
ets around the processor rings in conjunction with processor vec-
tors.

Second, two strategies for static load balancing have been pro-
posed: static load balancing of radiosity samples provides an even
distribution of radiosity samples and associated computations over
the processors; static load balancing of visibility complexity makes
best use of local processor memory and computational capacity to
solve the visibility problem which is responsible of about 70-90%
of the computation in a radiosity solution.

Third, two strategies for dynamic load balancing have been
implemented and the second one has been found to be particularly
successful on massively parallel computers in combination with
the method of adaptive refinement.

Further research will be carried out to increase the accuracy of
the form factor calculations and to compare them to exact methods.
Moreover, the existing meshing algorithms could be improved by
using discontinuity meshing to better approximate the illumination
of the scene.

References

[1] Baum, Daniel R., Holly E. Rushmeier and James M. Winget,
“Improving Radiosity Solutions through the Use of Analyti-
cally Determined Form-Factors”, Computer Graphics (ACM
SIGGRAPH ‘89 Proceedings) 23 3 (July 1989) pp 325-334.

[2] Baum, Daniel R. and James M. Winget,“Real Time Radiosity
Through Parallel Processing and Hardware Acceleration”,
Computer Graphics (1990 Symposium on Interactive 3D
Graphics) 24 2 (March 1990) pp 67-75.

[3] Capin, T. K., C. Aykanat and B. Özgüc,“Progressive Refine-
ment Radiosity on Ring-Connected Multicomputers”, Parallel
Rendering Symposium (Oct. 1993) pp 71-88.

[4] Caspary, E. and I. D. Scherson,“A self-balanced parallel ray-
tracing algorithm”, Parallel Processing for Computer Vision
and Display, P. M. Dew, R. A. Earnskaw, T.R. Heywood (Ed.),
Addison Wesley, 1989.

[5] Chalmers, Alan G. and Derek J. Paddon,“Parallel Processing
of Progressive Refinement Radiosity Methods”, Photorealistic
Rendering in Computer Graphics (Proceedings of the Second
Eurographics Workshop on Rendering) Springer-Verlag New
York 1994 pp 149-159.

[6] Cohen, Michael and Donald P. Greenberg,“The Hemi-Cube:
A Radiosity Solution for Complex Environments”, Computer
Graphics (ACM SIGGRAPH ‘85 Proceedings) 19 3 (Aug.
1985) pp 31-40.

[7] Cohen, Michael, Donald P. Greenberg, Dave S. Immel, Phillip
J. Brock, “An Efficient Radiosity Approach for Realistic
Image Synthesis”, IEEE Computer Graphics and Applications
6 3 (March 1986) pp 26-35.

[8] Cohen, Michael, Shenchang Eric Chen, John R. Wallace,
Donald P. Greenberg,“A Progressive Refinement Approach to
Fast Radiosity Image Generation”, Computer Graphics
(ACM SIGGRAPH ‘88 Proceedings) 22 4 (Aug. 1988) pp 75-
84.

processors static load balancing static+dynamic load balancing

256 45.8 33.9

Table 5: Speedup of dynamic load balancing on 60000 patch
scene (rings of 8 processors)

6432168421

sp
ee

d-
up

CPUs ld N

4
16

256128

no load balancing

static

dynamic

both

2
8

6432168421

sp
ee

d-
up

CPUs ld N

4
16

256128

no load balancing

static

dynamic

both

2
8

[9] Cohen, Michael F. and John R. Wallace,“Radiosity and Real-
istic Image Synthesis”, Academic Press Professional San
Diego CA 1993 ISBN 0-12-178270-0.

[10] Feda, Martin and Werner Purgathofer,“Progressive Refine-
ment Radiosity on a Transputer Network”, Photorealistic
Rendering in Computer Graphics (Proceedings of the Second
Eurographics Workshop on Rendering) Springer-Verlag New
York 1994 pp 139-148.

[11] Goral, Cindy M., Kenneth E. Torrance, Donald P. Greenberg
and Bennett Battaile,“Modelling the Interaction of Light
Between Diffuse Surfaces”, Computer Graphics (ACM SIG-
GRAPH ‘84 Proceedings) 18 3 (July 1984) pp 212-222.

[12] Kumar, Vipin, Ananth Y. Grama and Nageshwara Rao Vem-
paty,“Scalable Load Balancing Techniques for Parallel Com-
puters”, Journal of Parallel and Distributed Computing 22
(1994) pp 60-79.

[13] W. Lamotte, F.Reeth, L. Vandeurzen and E. Flerackers,“Par-
allel Processing in Radiosity Calculations”, Computer
Graphics International (1993) pp 485-495.

[14] Malley, Thomas J.V.,“A Shading Method for Computer Gen-
erated Images”, Master’s Thesis University of Utah (June
1988).

[15] Ng, Adelene and Mel Slater,“A Multiprocessor Implementa-
tion of Radiosity”, Computer Graphics Forum 12 5 (1993) pp
329-342.

[16] Recker, Rodney J., David W. George and Donald P. Green-
berg, “Acceleration Techniques for Progressive Refinement
Radiosity”, Computer Graphics (1990 Symposium on Inter-
active 3D Graphics) 24 2 (March 1990) pp 59-66.

[17] G. Schaufler, W. Stürzlinger and C. Wild,“Load Balancing
Schemes for a Parallel Radiosity Algorithm”, Technical
Report Institute for Computer Science University of Linz
Austria (Jan. 1995).

[18] Sillion, Francois and Claude Puech,“A General Two-Pass
Method Integrating Specular and Diffuse Reflection”, Com-
puter Graphics (ACM SIGGRAPH ‘89 Proceedings) 23 3
(July 1989) pp 335-344.

[19] Sillion, Francois X., James R. Arvo, Stephen H. Westin and
Donald P. Greenberg,“A Global Illumination Solution for
General Reflectance Distributions”, Computer Graphics
(ACM SIGGRAPH ‘91 Proceedings) 25 4 (July 1991) pp
187-196.

[20] Sillion, Francois X. and Claude Puech,“Radiosity and Global
Illumination” , Morgan Kaufmann San Francisco 1994 ISBN
1-55860-277-1.

[21] Stürzlinger, Wolfgang,“FXFIRE - Global Illumination with
Radiosity”, Technical Report Institute for Computer Science
University of Linz Austria (Dec. 1993).

[22] W. Stürzlinger, C. Wild, G. Schaufler,“Description and
Implementation of a Parallel Radiosity Algorithm”, Technical
Report, Institute for Computer Science, University of Linz,
Austria, July 1994.

[23] Stürzlinger, Wolfgang and Christoph Wild,“Parallel Progres-
sive Radiosity with Parallel Visibility Computations”, Pro-
ceedings of the Winter School of Computer Graphics ‘94
Plzen, Czech Republic (Jan. 1994) pp 66-74.

[24] Stürzlinger, Wolfgang and Christoph Wild,“Parallel Visibil-
ity Calculations for Radiosity”, ACPC Paragraph Workshop
Hagenberg Austria (March 1994) pp 32-40.

[25] Sung, Kelvin and Peter Shirley,“Ray Tracing with the BSP
Tree”, Graphics Gems III Academic Press ISBN 0-12-
409670-0 pp 271-274.

[26] Wallace, John R., Kells A. Elmquist and Eric A. Haines,“A
Ray Tracing Algorithm for Progressive Radiosity”, Computer
Graphics (ACM SIGGRAPH ‘89 Proceedings) 23 3 (July
1989) pp 315-324.

