
E�cient Ray Tracing for Bezier

and B-Spline Surfaces

by

W. Barth
W. St�urzlinger

Technical University of Vienna
Institut f�ur Computergraphik
Karlsplatz 13/1861
A{1040 Vienna
Austria

Tel.: +43(1)58801-4075
Fax : +43(1)5874932
e-mail: barth@eichow.tuwien.ac.at

E�cient Ray Tracing for Bezier

and B-Spline Surfaces

W. Barth, W. St�urzlinger

Institut f�ur Computergraphik, Technical University of Vienna, Austria

Abstract

Generating realistic pictures by raytracing requires intersecting the objects with many rays
(1 million or more). With Bezier or B{Spline surfaces as objects the intersections must be calcula-
ted by an iterative method. This paper describes an algorithm which performs these calculations
e�ciently. In a preprocessing step the surface is subdivided adaptively into parts and a tight
enclosure is calculated for each part. We selected parallelepipeds (�rst order approximations) as
enclosures, their orientation and the angles between their edges are chosen in such a way that they
enclose the respective part as tightly as possible, they are not rectangular in general. A binary
tree built with these enclosures allows to test very fast which parts of the surface may be hit by
a given ray. The leaves of the tree contain small, almost plane parts of the surface. For each part
a linear approximation is calculated, this is a parallelogram, in general not rectangular. For each
ray which hits the enclosure the intersection with this approximation is calculated �rst, yielding
an accurate starting point for the following iteration.

E�cient Ray Tracing for Bezier

and B-Spline Surfaces

W. Barth, W. St�urzlinger

Institut f�ur Computergraphik, Technical University of Vienna, Austria

1 Introduction

The generation of realistic pictures by raytracing is an expensive method. It is necessary to \shoot"
at least one ray for each pixel of the picture. Each \shooting" operation involves intersecting the ray
and the displayed scene. Re
ections and refractions create additional rays. To avoid aliasing{e�ects
normally more than one ray per pixel has to be \shot". Thus raytracing a picture involves a lot of
ray{object{intersections (1 million or more), and e�cient routines for their computation are needed.

Because of the large number of rays it is advantageous to use a preprocessing step, which leads
to a speed{up in computing the intersections. Even a very time consuming preparation which yields
only a tiny saving per intersection may reduce the total time signi�cantly, because preprocessing is
executed only once.

Bezier or B{Spline surfaces are polynomials in the parameters u and v. The intersection point
of a ray and such a surface has to be calculated iteratively. The Newton{Iteration is well suited if
the starting point is su�ciently accurate. Therefore we will adaptively subdivide the surface into
parts during the preprocessing step. This subdivision is done by halving the surface, or a part of the
surface, parallel to the u{ or v{axis. Subdivision will be repeated until all �nal parts of the surface
can be approximated accurately by a plane parallelogram. This linear approximation in general yields
non rectangular parallelograms. By intersecting the rays with these approximations we get very good
starting points for the following Newton{Iteration.

Many rays totally miss the surface, and these should be detected with minimal computational
e�ort. Similarly the fact that a ray will not hit a speci�c part has to be discovered very fast. We
exploit a property of the Bezier and B{Spline surfaces, namely that such a surface lies completely in
the inner of the convex hull of its control points, to construct a tight and simple enclosure for each part
of the surface. Then for a lot of parts we can very quickly detect that they cannot be hit because the
ray misses their enclosures. The tighter the enclosures, the more parts will be excluded from further
computations, the simpler they are, the faster the algorithm will work. We construct the enclosures
by expanding the approximating parallelograms in the third \dimension" until all control points are
inside the enclosure. This results in parallelepipeds which adapt well to the shape and orientation of
the surface parts. For small parts over{estimation is caused only by second order terms.

The algorithm that selects the parts of the surface possibly hit by a ray, i.e. parts whose enclosures
are hit, should also be as e�cient as possible. When subdividing a surface, in each step we subdivide
into two parts by splitting it along a line parallel to the u{ or v{axis. All parts are arranged in a
binary tree, the nodes of which contain the parallelepipeds enclosing the respective parts. The root
encloses the whole surface and the leaves are very small, almost plane parts of the surface.

Picture 1 shows the enlosing parallelepipeds for a goblet [4]. You can see that they adapt well to
the surface and that the degree of subdivision depends on the shape of the surface. The enclosures
are very thin, consequently they approximate the parts of the surface well. Therefore they are a well
suited base for our iteration method which produced Picture 2. Picture. 3 shows the large enclosing
parallelepipeds corresponding to a very rough subdivision of the surface from Picture 4. It is easy to
see that the angles of the parallelepipeds are chosen in such a way that they approximate the surface
part very tightly. In general they are not orthogonal.

1

To intersect a ray with the surface, we now test whether the ray hits the parallelepiped of the root.
If it does, we test both subtrees and so on until we reach the leaves. If the ray misses the enclosure
of a subtree we know that it misses all parts of the surface enclosed by it, and we can exclude the
subtree from further consideration. With high probability each of the reached leaves selects a part of
the surface hit by the ray. Now the intersection can be calculated iteratively.

The entire algorithm consists of two parts:

a) Preprocessing
The surface is divided along a line parallel to the u{ or v{axis, the parts are divided again,
and so on, until each part can be approximated accurately by a plane parallelogram. For these
subdivisions we use the algorithm of de Casteljau respectively de Boor [5], [9] which uses the
control points of the surface({part) to calculate those for the two parts. From the control points
of the parts we calculate the enclosing parallelepipeds. A binary tree is built, in which each node
contains only data about the parallelepiped, while the leaves contain the u{ and v{interval and
the approximating parallelogram too.

b) Intersection
Beginning with the root of the tree, i.e. the whole surface, we test whether the ray intersects the
enclosing parallelepiped. Then this test is done for succeeding nodes of the tree. If it misses a
parallelepiped the appropriate subtree is pruned from further consideration. Finally the search
will reach all leaves whose enclosures are hit by the ray. Each leaf contains the approximating
parallelogram which is used to calculate the starting point for the iteration depending on the
ray. The following iteration is done on the whole surface using its control points; therefore the
control points of the surface parts need not be stored.

1.1 Related work

M�uller and Hagen [8] describe an algorithm for speeding up raytracing for Bezier and B{Spline surfaces
by dividing them into small parts. Some other papers e.g. [3] present an approach preventing failure of
the iteration by using interval arithmetic, but this is very time consuming. Hierarchical structures for
the parts of the Bezier or B{Spline surface have been used by other authors, e.g. [11], [13]. Sweeney
and Bartels [11] use rectangular bounding boxes as enclosures. Through �ne subdivision they get tight
enclosures and good starting points. Yen et al. [13] construct better boxes by using \oriented slabs",
i.e. the enclosures adapt to the orientation of the surface parts, but they are rectangular, too. Other
authors, e.g. [6], [12], use bounding boxes as enclosures for parts of the scene in raytracing, but don't
refer to Bezier or B{Spline surfaces.

Using accurate approximations for the surface parts and non rectangular parallelepipeds as well
�tting enclosures has been described �rst by Barth [1]. The method uses the parallelogram, that is
the �rst order approximation of the surface part, for calculating a starting point and expands the
parallelogram by second order terms in the third dimension to get a simple and tight enclosure. This
yields much better starting points for the iteration and very good exclusion criteria for the parts not
hit by a ray without increasing the computational e�ort considerably. Giger{Hofmann uses the method
of [1]; in this thesis, however, iteration is based on a \down{hill" method; additionally, coherence is
exploited for speeding up the calculations. The main ideas of [1] are repeated here. Additionally we
report on new experiences and from these we develop some new variants of the algorithm.

2 Bezier and B{Spline Surfaces

Bezier surfaces as treated in this paper are de�ned by their control points Pi;j. The formula for this
de�nition is

B(u; v) =
nX
i=0

mX
j=0

Pi;jbj;m(v)bi;n(u) for 0 � u; v � 1 (2.1)

2

where the blending functions are the Bernsteinpolynomials

bi;n(t) =

�
n

i

�
ti(1� t)n�i (2.2)

Additionally we apply our method to B{Spline surfaces de�ned by

BSk(u; v) =
nP
i=0

mP
j=0

Pi;jNj;k(v)Ni;k(u)
for 0 � u � n� k + 2
and 0 � v � m � k + 2 (2.3)

with the normal blending functions. All details for calculating points of these surfaces, normal vectors
and etc. may be looked up in a textbook or monograph, e.g. [5] or [9]. Especially we require methods
for dividing a (part of a) surface into two parts by cutting it along a u{ or v{line, which is normally
performed by the algorithm of de Casteljau respective de Boor.

3 The preprocessing step

In section 1 we mentioned the necessity of a tight enclosure of a part of the surface. Furthermore this
enclosure should be a convex solid that is formed as simple as possible. These properties aid in testing
quickly whether a ray hits a part of the surface. If we expect a hit, a good initial value for the iteration
process should be easy to �nd too.

3.1 The approximating parallelogram

Let a given Bezier or B{Spline surface be cut into parts that are all nearly plane. Each part belongs
to two parameter intervals u < u < u and v < v < v (see Fig. 3.1). Its four cornerpoints and the
control points are known. The plane parallelogram de�ned by the two vectors ~v1 and ~v2 is a good
approximation (the �rst term of the Taylor series) for the part of the surface. This holds only if the
part is small enough, and contains no singularities, especially no edges.

This method will fail if the vectors ~v1 and ~v2 are linearly dependent or at least one of them is zero,
in which case other vectors ~v1,~v2 have to be used, for instance the axes of the coordinate{system.

This Taylor approximation favours one of the four vertices of the surface part. It is better to avoid
the unsymmetry and to use the mean value of the two vectors from E1 to E2 and from E3 to E4
instead of ~v1 and to calculate a similar replacement for ~v2. By moving the parallelogram spanned by
~v1 and ~v2 in an orthogonal direction so that the \highest" and \lowest" control points of the surface
part have the same distance from it { on di�erent sides { a very good approximation is constructed.
We found that the last method saves almost one iteration step per ray.

The intersection of the ray with the parallelogram gives an appropriate starting point for the
iteration, the values of u and v are calculated by linear interpolation (see section 4.3).

3.2 The enclosing parallelepiped

After calculating the parallelogram according to the method of the previous section we expand it to an
oblique angled parallelepiped. A third vector ~v3 is used to generate a parallelepiped spanned by ~v1, ~v2
and ~v3. Then the three major edges are elongated until all control points are enclosed (see Picture 5).
The parallelepiped is de�ned by

E + �1~v1 + �2~v2 + �3~v3 (3.1)

where E is one vertex of the approximating parallelogram. The coe�cients �1,�2,�3 are intervals. For
all control points we calculate the coe�cients of a representation according to equation (3.1). If all
these coe�cients are contained in �1,�2,�3 then all control points are enclosed by the parallelepiped.
We start the calculation of the intervals with [0; 1] for �1 and �2 and with [0; 0] for �3 { this corresponds
to the approximating parallelogram { calculate the coe�cients for the remaining control points and
extend the �{intervals if necessary. This provides an expansion of the parallelepiped in the plane of
the parallelogram as well as in the third direction. Picture 5 shows the control points for a part of the
surface, the part itself, the approximating parallelogram and the enclosing parallelepiped.

3

3.3 The tree of the surface parts

When subdividing the given Bezier or B{Spline surface, we cut it into two parts of approximately equal
size in each step. These parts are arranged in a binary tree. In each node we store the information
about the corresponding part, which will be used later for the intersection test or for calculation of a
starting point for the iteration. The essential information stored in a node is

1. Internal node: The enclosing parallelepiped.

2. Leaf: The enclosing parallelepiped, the parameter domain u , u and v , v, the approximating
parallelogram

It is not necessary to store the control points of the part of the surface, because they are not
required for the calculation of the ray{surface{intersections performed later: The intersection test
and the calculation of a starting point are performed with the parallelogram and the oblique angled
parallelepiped. The iteration process described in the next section uses the control points of the original
surface only. Because it yields the same results regardless whether it is performed on the whole surface
or on a part, the iteration is always executed on the whole.

3.4 Subdivision strategy

We subdivide the current part of the surface by halving either in the u{ or in the v{direction. The
algorithms of de Casteljau and de Boor allow us to calculate the control points of the two new parts
from those of the larger part. The new control points are required for further subdivision during our
preprocessing step. But they are not stored in the tree as mentioned in section 3.3.

Subdivision stops when the resulting part is approximated well enough by a plane parallelogram
of section 3.1. This can be seen from its control points. Both of the following conditions must hold for
each part that will not be divided further.

1. all control points are close to the plane of the approximating parallelogram, i.e. the enclosing
parallelepiped is thin.

2. the four corner points E1, E2, E3 and E4 approximately form a parallelogram, i.e. the lengths
of the opposite sides do not di�er much.

The decision whether to halve along the u{ or the v{ axis is based on the curvature of the u{ and
v{lines. The control points for a given parameter direction show how much these lines deviate from
a straight line. To get an estimate for the curvature in the v{direction we take three points Pi;j with
�xed i and ascending j, calculate the chord of the two outer points and the distance of the third point
from it. Then we take the maximum of these chord{distances for all triples. The same is done for the
u{direction. Now we divide along a v{line if the measure for the curvature in u{direction is the bigger
one.

Also the subdivision along a v{line should be favoured if the distance between E1 and E3 di�ers
much from the distance of E2 and E4 (see Fig. 3.1), and this di�erence is bigger than that for the
other two sides of the parallelogram. This causes a split of a ring{shaped surface into two sectors, and
this split is carried out even if the surface is almost plane.

4 Calculation of the ray{surface{intersections

After performing the preparations described in the previous sections the raytracing process is started
and the following steps will be performed for each ray: The tree of the surface parts is searched for
parts which may be hit by the ray, a starting point is calculated for each part hit, and the iteration
is started. Because of the preparations the calculations can be performed very quickly.

4

4.1 Searching the tree of surface parts

First, we search for all parts of the surface which may contain an intersection with the ray. We start
at the root of the tree (the whole surface) and test whether the ray hits the enclosing parallelepiped.
If it does we continue with both of the successors and carry out the same test. We go on until we reach
those leaves of the tree whose parallelepipeds are intersected by the ray. These leaves correspond to
small, almost plane parts of the surface. Because the parallelepipeds enclose the surface tightly, we
often �nd a node which is not hit by the ray, and therefore we can prune the corresponding subtree
from further consideration (all direct and indirect succesors of this node belong to parts of the surface
that are enclosed by this parallelepiped).

As we use enclosures we are sure that for each ray all parts of the surface which may contain a hit
will be found. For these parts the iterative process which will be discussed in section 4.4 is started.

4.2 Intersection with the parallelepiped

The test whether a ray hits an epiped is simple. The ray is given by

A+ t~r (4.1)

where A is the origin and r the direction vector. We de�ne ~p as the vector from A to E1 and ~wk as the
normal vector on the faces of the epiped, then we use (4.1) and (3.2), and after some transformations
we get

tk =
(~p � ~wk) + �k(~vk � ~wk)

(~r � ~wk)
with k = 1; 2; 3 (4.2)

Taking the boundaries of the interval �k calculated in the preparation step we obtain from (4.2) the
boundaries of an interval for tk, which determine the intersection of the ray with the two planes
containing opposite faces of the parallelepiped in the k{th dimension. Therefore the interval tk gives
the \time" the ray \spends" between these two planes. The intersection of the three intervals tk

[t] = [t1] \ [t2] \ [t3] (4.3)

states the \time"{interval for the ray being inside the parallelepiped. Especially if [t] is empty the
ray misses the epiped completely. If the denominator in (4.2) is zero the ray is parallel to the two
corresponding faces. It lies either between the two planes or it is outside. Instead of developing (com-
plicated) rules for distinguishing between these two cases we calculate the intersection of a nearly
parallel ray by taking a very small value for the denominator. Then we get a very large intervall tk
containing the interesting domain of t completely if the ray is between the two planes, in the other
case tk is far away and (4.3) will yield an empty interval.

In raytracing all primary rays come from the same origin A, the eye point, but they have di�erent
directions ~r. All these rays have to be tested for intersection with the same tree of parallelepipeds and
therefore very often the same epiped is tested against many rays with the same ~p. In (4.2) only the
denominator is dependent on ~r. All other values can be precalculated for �xed ~p and they can be stored
in the epiped tree. During raytracing, for each primary ray only 3 dotproducts for the denominator, 6
divisions for the tk{intervals and the comparisons for (4.3) are required to calculate the intersection
completely. Only for rays with a di�erent origin the �rst dotproduct in the numerator of (4.2) has to
be calculated additionally.

These intersection tests should be optimized very carefully, because they heavily a�ect the e�-
ciency of the method, as they have to be done for each pixel (when oversampling even more often)
and for each node of the tree which is reached. In most cases they yield an empty interval: For all rays
far from the surface, in all branches of the tree ending at an intermediate node. Therefore intersection
tests are executed much more frequently than the calculation of a starting point and the iteration.

5

4.3 Starting point for the iteration

As an initial point for the iteration we use the intersection point between the parallelogram from
section 3.1 and the ray. The t parameter for this point is found by setting k = 3 and �3 = 0 in (4.2)

t0 =
(~p � ~w3)

(~r � ~w3)
: (4.4)

In section 4.2 ~w3 has been de�ned as the normal vector to the approximating parallelogram, therefore
it is an approximation for the normal to the surface. The point itself is found by

D0 = A+ t0 � ~r: (4.5)

To get the �rst approximate values u0, v0 for the intersection point we calculate the coe�cients �1
and �2 for D0 and get

u0 = u+ �1 � (u� u) (4.6)

and v0 = v + �2 � (v � v) (4.7)

Some problems arise if the denominator of (4.4) is zero or very small, i.e. the ray ~r is almost orthogonal
to ~w3. The geometric interpretation is that the ray is nearly tangential to the part of the surface (see
Fig 4.1).

This critical case can be recognized, because it appears only when the ray passes through a very
thin box approximately parallel to the larger face, we take as a criterion

tan� >
b

h
(4.8)

Then it is very likely that more than one intersection point exists. This situation causes convergence
to be very slow. But there is yet another problem, we may �nd the wrong intersection. For raytracing
this proves to be fatal! The algorithm computes the color as if the ray came from the wrong side of
the surface. And this color is usually completely di�erent, as the one side is usually in shadow if the
other one is lighted. We avoid such errors by using the entrance point of the ray into the u,v{domain
as the initial value. Now the iteration is more likely to converge to the �rst intersection. But because
of e�ciency this additional iteration is only done when (4.8) holds, therefore in all normal cases we
do not a�ect the speed of convergence.

4.4 The iteration

The calculation of an accurate value for the intersection point is performed by the Newton method,
which generally converges very quickly.

In section 4.3 we calculated the initial values u0, v0 from the parallelogram which approximates
a part of the surface. The iteration process itself works on the whole surface and with the original
control points. We calculate the corresponding point P0 with the partial derivatives P0u and P0v and
the normal n0. The ray is then intersected with the plane tangential to the point P0 corresponding to
u0,v0 and we get a new approximation u1,v1.

We stop the iteration process if two succeeding points di�er less than a given �. This � can be
calculated either as the maximumof the di�erences between the u and v values of two approximations
or from the x,y and z values.

Finally we have to cope with another di�culty: termination of the iteration without success.
We start the iteration for each ray which hits the enclosure of a part. But some of these rays miss
the corresponding part of the surface. In these cases the iteration cannot converge. Consequently, if
the convergence criteria are not met after a preset maximum number of iteration steps (e.g. 3) the
algorithm assumes that the ray misses the part of the surface and returns the result \no hit". Another
indication is that the iteration leaves the u,v{domain of the surface part. Then the intersection is
probably inside the domain of a neighbour part. Because the iteration is likely to approach the solution
from one side we go back to the border of the domain after leaving it for the �rst time. If the next

6

iteration step again leads to a point outside the domain we return the result \no hit". These two
heuristic rules identify almost all rays which have no intersection point inside the actual part. It is
also very unlikely that they eliminate (by mistake) a ray which does intersect.

In order to avoid losing an intersection we start a second iteration process after an unsuccessfull
iteration, using the entrance point into the epiped as the initial value. This happens only for a small
fraction of all rays and therefore does not signi�cantly slow down the whole algorithm. If a third
iteration is carried out after an unsuccessful second one, using the exit point of the ray as initial value,
it is almost impossible to miss an intersection.

5 Implementation and results

The algorithm described in this paper has been implemented, and it has been integrated in the RISS{
System [2] which is a raytracing system developed at the Institute for Computer Graphics at the
Technical University of Vienna.

Tests showed the predicted behaviour, namely quick convergence of the iteration and a very small
number of failures if the given surface has been subdivided into su�ciently small parts. We even
observed some e�ects which were counterintuitive at �rst glance { e.g. the total computation time
may decrease as the number of subdivisions increases. This surprising behaviour results from the fact
that �ner subdivision yields more accurate starting values for the \costly" iteration and therefore less
iterations are required. These savings are a multiple of the increased e�ort for search in the epiped tree.
As expected the additional time for the preprocessing step is minimal. Picture 6 [7] shows the tea-pot
as generated by RISS [2]. For anti{aliasing we used the method of \Adaptive Stochastic Sampling"
[10]. The surface has been divided into 1397 parts. Approximately half of the rays required only one
iteration, this is always neccesary to check the accuracy. For nearly all other rays a second iteration
was su�cient to get an accurate intersection. The preprocessing step took 22 seconds, while the actual
rendering for 1000 by 750 pixels took about 4 hours on a VAXStation 3100/38.

Even more important is the fact that the number of failures drops with the number of subdivisions.
If the parts of the surface are too big, the following will happen at the outline of the surface: Based on
slow convergence, further computation is considered useless and the iteration is { falsely { stopped.
The algorithm erroneously assumes the surface is not hit, although a parallelepiped has been hit. It
consequently assigns the color of the background to the pixel. Therefore the outline may have some
notches. Sometimes we even found such \gaps" in areas of the surface where the curvature changed
its sign. The iteration also may converge to the rear of the two intersection points, as was discussed
in section 4. As an example, if picture 6 is done without anti{aliasing only four wrong pixels are
calculated. But they are not easily noticeable, and in the anti{aliased picture all wrong values are
mixed with correct ones, and therefore invisible.

As we can get only an approximate value for the intersection point (and not the exact one), we
also have to consider the situation where the approximation point lies \behind" the surface. Then the
test whether a light source contributes to the illumination shows that the surface shades itself. This
problem can be avoided by placing the intersection point a little closer to the origin of the ray, the
magnitude of the correction has to be larger than the error of the last iterated point.

Picture 7 shows some of the failures that can occur when no attention is paid to the directives
discussed earlier: For this picture we used a too rough subdivision (Picture 3), therefore the algorithm
failed to converge after the preset number of steps at parts of the surface where the parallelograms
don't approximate the surface well. Additionally the test for almost tangential rays (section 4.3) was
disabled. Consequently artifacts appear near the outline of the surface. The correct picture generated
with a �ner subdivision and careful iteration is shown in Picture 4.

Literatur

[1] W. Barth: E�zientes Ray{Tracing f�ur Bezier{ und B{Spline Fl�achen. In Encarnacao,
Hoschek, Rix: Geometrische Verfahren der Graphischen Datenverarbeitung, ZGDV
Beitr�age zur Graphischen Datenverarbeitung, Springer{Verlag 1990

7

[2] M. Gervautz, W. Purgathofer: RISS | Ein Entwicklungs{System zur Generierung

realistischer Bilder. In W. Barth (Hrsg.): Visualisierungstechniken und Algorithmen,
Informatik{Fachberichte Nr. 182, Springer{Verlag, 1988

[3] C. Giger: Ray Tracing Polynomial Tensor Product Surfaces. In Hansmann, Hopgood,
Strasser (Hrsg.): Proc. Eurographics 1989, North{Holland, S. 125 { 136

[4] R. Gro�: Ray{Tracing f�ur Bezier{Fl�achen. Diplomarbeit, Techn. Univ. Wien, 1991

[5] J. Hoschek, D. Lasser: Grundlagen der geometrischen Datenverarbeitung. Teubner
Stuttgart, 1989

[6] T. Kay, J. Kajiya: Ray Tracing Complex Scenes, Computer Graphics, Proceedings
SIGGRAPH August 1986.

[7] W. Kiendl: Ray{Tracing f�ur Bezier{Fl�achen. Diplomarbeit, Techn. Univ. Wien, 1991

[8] H. M�uller, H. Hagen: Beschleunigung der Bilderzeugung f�ur Freiform
�achen

durch Speichereinsatz. In Clauer, Purgathofer (Hrsg.): Proc. Austrographics 1986,
Oldenbourg{Verlag, Wien, M�unchen, 1986

[9] T. Pavlidis: Algorithms for Graphics and Image Processing. Springer{Verlag, Heidel-
berg, 1982

[10] W. Purgathofer: A Statistical Method for Adaptive Stochastic Sampling. In Requicha
(Hrsg.): Proc. Eurographics 1986, S. 145 { 152, und Computers and Graphics, Vol. 11,
S. 157 {162, 1987

[11] M. Sweeney, R. Bartels: Ray Tracing Free{Form B{Spline Surfaces, IEEE Computer
Graphics and Applications, February 1986.

[12] H. Weghorst, G. Hooper, D. Greenberg: Improved Computational Methods for Ray

Tracing, ACM Transactions on Graphics, January 1984.

[13] J. Yen, S. Spach, M. Smith, R. Pulleyblank: Parallel Boxing in B{Spline Intersection,
IEEE Computer Graphics and Applications, January 1991.

[14] C. Giger{Hofmann: Ein Ray{Tracing{Verfahren zur Visualisierung polynomialer Ten-

sorprodukt
�achen, Dissertation, Technische Hochschule Darmstadt (Germany), June
1992.

8

