
1 INTRODUCTION

The light leaving a surface is determined by the
incoming light and by the material properties of
the surface - mathematically described by the
local illumination model. The problem is how
to accurately calculate the light reaching the
surface which in turn is determined by the light
emitted by all other surfaces and taking the
scene geometry and occlusion into account.
An approximation to the light leaving all sur-
faces is calculated by global illumination meth-
ods which simulate the distribution of light in
an environment. Light emitted by a lightsource
is either absorbed by the hit surfaces or
reflected to other surfaces and so on. By discre-
tizing the environment into patches (i.e. planar

polygons) and under the assumption of diffuse
surfaces an equation system can be formulated
which describes the mutual influence of
patches. Solving this system gives the emitted
light (the radiosity) for each patch. For an
image of the environment the polygons are ren-
dered from a user selected view point with hid-
den surfaces removed. However, the chosen
patch size limits the quality of the approxima-
tion and leads to artefacts in the final image.
These artefacts are due to an interpolation of
radiosity values at inappropriate places or over
unacceptably large areas as neither the final
view point nor the image resolution are known
at this stage. For an overview of global illumi-
nation methods see Cohenet al. or Sillion et al.
[Cohen-Wallace93,Sillion-Puech94].
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More correct images are obtained by a so called
local pass. First the surface point visible
through each pixel is determined, then the light
leaving the surface at this point is calculated
from the incident illumination (using the results
of the global illumination solution) and the
material properties.
This paper presents two new methods for local
illumination calculation. First a method to rep-
resent the surfaces visible in any direction from
a surface point is discussed which allows to
compute the exact irradiance. The second con-
tribution is a way to approximate the incident
light with given error bounds.

2 LOCAL PASS: LOCAL ILLUMINA-
TION AT EACH PIXEL

The local pass method evaluates the local illu-
mination model at each surface point visible
through the pixels of an image. This allows to
compute high quality images from an approxi-
mate global illumination solution and avoids
the artefacts of the discretized global illumina-
tion solution.
Based on a coarse solution of the global illumi-
nation problem a high quality picture is gener-
ated by finding the surface pointx visible at
each pixel and obtaining the colour of this pixel
by computing the irradiance ofx and applying
the local illumination model.
The local illumination model describes the rela-
tionship between the irradianceH of a pointx
(the “incoming” light) and the reflected light.
For the diffuse case the radiosityB equals the
irradiance multiplied by the reflectivity of the
surface plus its emission:

(1)

whereE is the emission andρ is the reflectivity
of x’s surface. The incoming light for a pointx
is given by

(2)

which integrates the radiosityB coming from
all possible directions  on the hemisphereΩ
weighted by the cosine of the angleΘ between

 and the normal vector ofx’s surface. The
radiosity coming from each direction
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depends on the surface pointy visible in the
direction  and its radiosityB(y) obtained from
a previous global illumination solution.
To calculate the irradiance from a fully visible
polygonA with constant radiosityB it suffices
to solve the contour integral for equation (2)
which gives (see e.g. [Baum et al. 89]):

(3)

wherea are the edges of the polygon andN is
the normal vector ofx’s surface.Γa is the vector
normal to the plane defined byx and the edgea
and length equal to the angleγa (see figure 1).
The geometry dependent term in equation (3)
FF(x,A) is also called the form factor. For an
alternate way of solving equation (2) using
spherical triangles see [Bian92].

General scenes consist of more than one poly-
gon and occlusion must be taken into account
when solving the integral over the hemisphere.
Let Avis(x) be the part(s) ofA visible fromx. The
irradianceH(x) can then be calculated by

(4)

The visible parts of all polygons can be identi-
fied by projecting them onto a virtual unit hem-
isphere with centerx above the surface ofx.
The new hemisphere projection described in
chapter 3 is a method to obtain and store the
surfaces visible in all directions of the hemi-
sphere.
Other solutions to equation (2) have been
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Figure 1: Geometry for form factor of a
polygon
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obtained using stochastic methods (e.g.
[Rushmeier88,Shirley91,Ward94]).

3 PROJECTIONS ONTO THE HEMI-
SPHERE

Accurately representing the projection of poly-
gons onto the hemisphere allows to identify the
visible parts of all polygons as seen from a
point x. Considering occlusion allows to com-
pute the exact irradiance for a surface point.

3.1 Previous Work

First approximations to a projection onto the
hemisphere were computed using a hemicube
[Cohen-Greenberg85]. The polygons are raster-
ized onto the five faces of a hemicube with z-
buffering to account for visibility. Other
approaches use a tetrahedron [Beran-Koehn-
Pavicic91,Spencer91], discretizations of the
hemisphere [Gatenby-Hewitt91] or the projec-
tion onto a single plane [Sillion-
Puech89,Recker et al. 90].
All above methods have in common that they
suffer from aliasing problems due to the rasteri-
zation of the projection plane(s). They do not
deliver exact results for arbitrary polygonal
environments with occlusion as they fail to rep-
resent the visible surface points in all directions
of the hemisphere accurately.

3.2 Exact Projection onto the Hemisphere

An exact projection of a polygonA with verti-
ces vj onto the unit hemisphere defined by a
projection centerx and its surface normal vector
N can be calculated in the following way.
The intersection of a ray from the projection
centerx to a polygon vertexvj with the unit
hemisphere gives the projected vertexvj , which
is calculated by normalizing the ray direction.
The projection of the polygon edge defined by
v1 andv2 onto the hemisphere is curved, it is a
segment of a great circle. However the pro-
jected verticesv1 and v2 lie in the planeε1
defined byx, v1 and v2 which can be used to
represent a projected edge unambiguously.
Testing beforehand if the polygonA faces the
projection centerx removes backfacing poly-

gons. Translatingx to the origin allows to spec-
ify eachεi by its normal vector only. Clipping
the polygonA at the plane defined byx andN
before projection assures that all projected ver-
tices fall onto only one half of the unit sphere at
x. This obviates the need to rotate the coordi-
nate system to align the normal vectorN with
any axis.

3.3 Intersecting Projections

From Nusselt’s analogon it is clear that projec-
tions onto the hemisphere can be represented by
two dimensional data structures. Intersecting
two projected polygons is therefore topologi-
cally equivalent to clipping two dimensional
polygons against each other which is done
using polygon intersection routines e.g. the
Weiler-Atherton algorithm [Weiler-Atherton-
77]. Modifications are needed for the point-
against-line test and for the intersection compu-
tation of two edges to work on the hemisphere
rather than in two dimensions. To avoid testing
a polygon against all previously projected poly-
gons a two dimensional binary space partition-
ing (BSP) tree [Fuchs80] can be used.
Testing a projected vertex against a projected
edge (defined by a planeεi) is equivalent to
deciding on which side of the plane the vertex
lies (at the cost of one dot product).
The intersection of two edges is computed as
the line of intersection of the two planes con-
taining the edges and the hemisphere center.
This line is defined by the cross-product of the
two plane normals and the projection center.
Normalizing the cross-product gives the point
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Figure 2: Projection of polygon onto
hemisphere



on the hemispherei corresponding to the inter-
section of the two lines (see figure 3).

3.4 Visible Surface Determination

Assume that with each projected vertex the dis-
tance from the projection centerx to the original
vertex vj is stored asdist(vj) and for each pro-
jected polygon a reference to the original poly-
gon is kept as well.
Consider two polygonsA andA’ whose projec-
tions A and A’ onto the hemisphere intersect,
andA’ further away from the projection center
x. ThenA’ has to be clipped toA using the mod-
ified polygon clipping method described above.
If the original polygons do not intersect in space
all dist(vj) are smaller than alldist(vk’) . (A simi-
lar case holds ifA’ lies in front ofA).
If the polygons do intersect one of them must
be partitioned by the base plane of the other
polygon and both parts have to be handled sepa-
rately.

3.5 An Algorithm for the Local Pass

As equation (3) is based on angles between vec-
tors only, it can be used to compute the irradi-
ance at a pointx coming from the visible parts
of a polygonAvis(x). Summing the irradiance of
each polygon gives the total irradianceH(x)
from which the point’s radiosity is calculated
using equation (1). The calculated radiosity is
exact to within the error introduced by the inac-
curacy of the global illumination solution.
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Figure 3: Intersection of two projected
edges

The local pass method applies equation (1) at
each pixel to compute an exact image of a scene
with global illumination. Instead of projecting
all patches onto the hemisphere they can be ren-
dered front to back until the whole hemisphere
is covered. This can be done traversing a spatial
subdivision hierarchy from the pointx outwards
(see e.g. [Wang-Davis90]). The form factors of
the visible parts of the patches are determined
using the results of the hemisphere projection
and their radiosity weighted by the form factor
is accumulated to the irradiance of pointx.

4 APPROXIMATE LOCAL ILLUMINA-
TION

The complexity of a brute force local pass is
proportional to the number of pixels times the
cost of projecting all patches onto the hemi-
sphere. Projecting all patches may takeO(n2)
time, as scenes exist where the projection has
O(n2) parts (see e.g. [Foley90]).
One approach to deal with this cost is to project
less patches onto the hemisphere, namely only
those having significant influence on the illumi-
nation of the point under consideration. For the
other patches a coarse approximation of their
illumination can be used to estimate their influ-
ences. This is also motivated by the fact that ray
tracing often achieves acceptable results by
simply point sampling the light sources.
In computing an approximation to the irradi-
ance decision criteria are needed which poly-
gons to project accurately and the contribution
of which to approximate. These criteria can be
based on bounds on the contribution of a part of

for all pixels
find surface point x visible through pixel
Covered = 0
while Covered < 1.0

v = next voxel front to back
project patches of voxel v onto the hemisphere
Covered += area covered by patches of voxel v

endwhile
H(x) = 0
for each patch-part A visible on the hemisphere

H(x) += FF(x,A) * B(A)
endfor
B(x) = ρ(x) * H(x)

endfor

Figure 4: Pseudocode for local pass



the scene for the irradiance of a pointx.

4.1 Bounding the Energy

Assume that the results of the global illumina-
tion simulation are stored in an octree (any
other hierarchical space subdivision scheme
could be used as well).
For a voxelv of the octree an upper bound for
the radiosity it can radiate can be defined as:

(5)

which says that the whole voxel emits a radios-
ity equal to the maximum radiosity of any patch
in the voxel.
The octree is built by a recursive procedure
which considers all patches at the root node.
Either the node is subdivided into eight children
with patches split if necessary, or the patches
are stored with the current voxel if the follow-
ing criterion is met:

(6)

wherediagonal is the voxel diagonal,Energy-
Threshold bounds the energy one voxel can
radiate,level is the current hierarchy level, and
maxlevel is the maximal allowable depth of the
octree. The left part of the criterion tries to put
equal amounts of energy into each octree leaf.
With a view dependent energy bound the voxels
can be sorted by the influence they have when
computing the illumination of a surface point.

4.2 View Dependent Energy Bounds

An upper bound to the maximum contribution
of a voxelv’s energy to the irradiance of a view
pointx can be given by:

(7)

whereFF(x,v) is the form factor of the projec-
tion of the silhouette of the voxel (see figure 5).
If the view pointx is inside the voxel the form
factor is defined to be 1.
A tighter upper bound for the voxels contribu-
tion takes the orientation of the patches with
respect to pointx into account:
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∨
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where N(Ai) is the normal of patchAi and  is
the vector fromx to the center ofAi.
This upper bound for the voxels contribution
can be used to sort the voxels by decreasing
potential influence on pointx. The total possible
contribution of the patches in the octree is
bounded by:

(9)

4.3 Error Bounded Approximation of the
Local Pass

An error bounded approximation to the irradi-
ance of pointx can be calculated by accumulat-
ing the contribution arriving from each voxelv.
The voxels are sorted in descending order of

 to guarantee that the voxels are
processed in the order of decreasing possible
contribution.
After the visible parts of the patches in voxelv
as seen from pointx have been determined their
contribution is added to the irradiance of point
x. Let BOctree  be the upper bound to the
energy remaining in the octree. After a voxelv
has been processedBOctree  can be decreased
by .
In order to approximate the irradiance of pointx
up to a certain tolerance, it suffices to project
voxels until the maximum energy remaining in
the octree has fallen below a given percentage
of the current approximation of the irradiance
H(x). This criterion can be enhanced by using
the fact that the voxels are projected front to
back and taking into account the percentage of
the hemisphere already covered by (previously)
projected patches:

Figure 5: Possible silhouettes of a voxel
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(10)

The algorithm is summarized as pseudocode in
figure 6 .

The visibility of the patches of each voxelv is
determined by projecting all voxels onto the
hemisphere which lie betweenx and v. By
remembering which voxels have already been
projected, projecting them again either in
SolveVisibility  or in the main loop is
avoided. After SolveVisibility  all
patches possibly hiding patches in voxelv have
been projected. Therefore, by projecting the
patches of voxelv the correct visibility of the
patches is determined.

5 IMPLEMENTATION AND RESULTS

The current implementation of the hemisphere
projection and local pass method runs on a Sili-
con Graphics Indigo Workstation (R3000). The
results were obtained using a scene consisting
of approx. 1300 polygons. which were split into

BOctree 1 Covered–( )⋅ Tolerance B x( )⋅<

for all pixels
find surface point x visible through pixel
H(x) = 0
Covered = 0

BOctree  =

while B Octree  * (1-Covered) > Tolerance * H(x)

v = next voxel in order of decreasing

compute projection v

BOctree  -=

if depth( v) < depth(polygons of v on hemisphere)
SolveVisibility(x,v)
project patches of voxel v onto hemisphere

H(x) +=

Covered += area covered by patches of voxel v
endif

endwhile
H(x) += approximation of portion of B Octree  arriving at x

B(x) = ρ(x) * H(x)
endfor

SolveVisibility(x,v)
project all voxels v i  possibly hiding v onto hemisphere

remember v i  has been projected (do not project it again)

B x octree,( )

B x v,( )

B x v,( )

B A( ) FF x A,( )⋅
A v∈
∑

Figure 6: Pseudocode for optimized local
pass

2985 patches by the octree (see figure 8).
The exact method presented in chapter 3 was
implemented to compute reference solutions.
To speed up the projection a BSP tree was used.
Test showed that the error bound provided by
equation (7) overestimates the contribution by
several orders of magnitude in general which
results in poor algorithm performance.
Using equation (8) up to 56 percent of the upper
bound of the energy contribution actually con-
tributed to the irradiance in the test runs.
The average number of projected polygons and
the relative maximum image error are shown in
relation to the tolerance parameter (see figure
7).

The upper diagram shows e.g. that on the aver-
age approx. 1200 (=40%) patches have to be
projected so that the maximum remaining
energy falls below 20%. As can be seen from
the lower diagram the corresponding maximum
image error was 2% which is accurate enough
for most images. Tests with other scenes
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showed that the given results are representative.

6 CONCLUSION AND FURTHER
EXTENSIONS

This paper presents a new exact method to com-
pute and store the surfaces visible from an arbi-
trary surface point. This allows to compute the
exact illumination of a surface point. Further-
more error bounded approximations to the irra-
diance were calculated and it was shown that
considerable savings are possible.
A different way to reduce the cost of the local
pass is to evaluate the local illumination inte-
gral less often and use some kind of interpola-
tion scheme if applicable. Arvo [Arvo94]
introduced a method to compute irradiance gra-
dients which can be computed simply by using
the results of the hemisphere projection method
introduced in this paper. Gradients have already
been applied successfully to identify areas
where irradiance can be interpolated (see
[Ward94]) which shows the feasibility of the
above approach.
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