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Abstract

Recent approaches to realistic image synthesis have split the rendering process
into two passes. The first pass calculates an approximate global illumination solution,
the second generates an image of high quality from a given view point using the illu-
mination solution obtained in the first pass.

This paper discusses a new method for projecting polygons onto the hemisphere
which is the central operation performed for each pixel during the local pass. The
method calculates an exact hemispherical projection of all polygons considering
occlusion. The chosen representation of the projected polygons facilitates the fast and
accurate computation of formfactors with regard to the projection center.

The new hemispherical projection method is used to obtain an exact local pass
solution.

 1 Introduction
A frequently encountered problem of realistic image synthesis is how to accurately compute the
light reaching a surface as it determines the appearence of the surface to the viewer. How much
light leaves the surface is governed by physical laws and is determined by the incoming light and
the material properties of the surface.

The reflected radiance (energy per unit area) influences the illumination of other surfaces and vice
versa. To capture the effects of multiple reflections global illumination methods simulate the proc-
ess of radiance distribution. However it is not feasible to compute illumination for the infinite
number of all points of an environment. Therefore, the problem is simplified by partitioning all
surfaces into planar convex polygons. The illumination of the surface polygons is approximated
by setting up an equation system which describes the exchange of radiance between them and
solving it.

An alternative is to use stochastic algorithms which follow random photon rays from the light-
sources. If a surface is encountered either the ray is reflected further into the scene or the energy is
stored with the polygon. An overview of global illumination methods is given in [CW93,SP94].
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For an immediate picture of the environment all polygons can be rendered onto the image plane,
but the chosen polygon size limits the quality of the approximation and leads to image artifacts in
the final picture. More correct images are obtained through a so called local pass. First the surface
point visible through each pixel is calculated, then the light leaving the surface at this point is
determined by calculating the incident radiance (irradiance) using the global illumination solution
and taking the material properties into account.

For simplicity only the diffuse case is discussed and constant radiance is assumed for all polygons
although these restrictions will be removed in chapter 3.2.

 1.1 Irradiance

Assume that a solution for all radiance values L for polygons of a scene has been precalculated by
an approximate global illumination simulation. The irradiance for a point P is then given by

(1)

which integrates the radiance L coming from all possible directions  on the hemisphereΩ
weighted by the cosine of the angleθ between  and the normal vector of P’s surface. The radi-
ance L( ) depends on the surface visible in the direction . The main contribution of this paper
is a new way to accurately solve the integral over the hemisphere.

For diffuse polygonal scenes equation (1) can be rewritten as: (see also figure 1)

(2)

where the visibility function V(x,P) equals one if x and P are mutually visible and zero otherwise.

Figure 1: Geometry for local illumination

The integral in equation (2) is alsow known as the formfactor FPA between point P and polygon A
which simplifies the equation to:

(3)

For unoccluded polygons the formfactor for a polygon can be calculated by solving the contour
integral (see e.g. [BRW89]):

(4)

where a are the edges of the polygon A and N is the surface normal at P.Γa is the normal to the
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plane defined by P and the edge a with magnitude equal to the angleγa (see figure 2).

Figure 2: Formfactor from a point to a polygon

For an alternative way formulation for computing formfactors using projected great circles see
[Bi92].

The following section describes a new method of projection polygons onto the hemisphere taking
occlusion into account. To compute unoccluded formfactors equation (4) is used.

 2 The Hemispherical Projection

 2.1 Previous Work

First approximations to a projection onto the hemisphere were computed using a hemicube
[CG85]. The polygons are projected onto the five faces of a half cube. Other approaches use other
discretizations to the hemisphere’s surface [Sp91,BP91], the projection onto a single plane
[SP89], or monte carlo ray tracing [Ma88] to compute formfactors.

The above methods have in common that they do not deliver exact results for arbitrary polygonal
environments with occlusion.

 2.2 Exact Projection onto the Hemisphere

First the projection of a polygon A with vertices vj onto the unit hemisphere defined by a projec-
tion center P and its normal vector N is desribed.

Figure 3: Projection of polygon onto hemisphere

Simply normalizing the vector  for each vertex of A gives the projected verticesvj. The projec-
tion of the polygon edges are segments of great circles. The projected verticesv1 andv2 and the
line between them all lie in the plane defined by P, v1 and v2. Viewed from the projection center P
the line and the circle segment coincide.
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A projected polygon covers a part of hemisphere limited by great circles and is uniquely defined
by its projected verticesvj.

Testing beforehand if the polygon A faces the projection center P removes backfacing polygons.
Clipping the polygon A at the plane defined by P and N assures that all projected vertices lie on
half of the unit sphere at P therefore no coordinate transformation is necessary to align the normal
vector N with an axis.

 2.3 Intersecting Projections

Consider the intersecting projections of two polygonsA andA’. On the hemisphere their edges
are segments of great circles. Instead of intersecting circles the intersection of the projections can
be computed easily as follows.

Two edges intersect if the verticesvj andvj+1are separated by the plane defined by the projection
center P and the two verticesvk’ andvk’+1 and vice versa. The intersection pointi is computed by
intersecting one of the planes with the line connecting the other two vertices in three dimensional
space and projecting it onto the hemisphere by normalizing its vector (see figure 4).

Figure 4: Intersection of two projected edges

Integrating this edge intersection method into a standard two dimensional polygon intersection
algorithm allows to accurately intersect projected polygons on the hemisphere. Any data structure
for two dimensional polygonal partitions (e.g. winged-edge,...) can be used to store the partition
of the hemisphere. Note that all points are three dimensional and all tests and intersection calcula-
tions are done in three dimensional space.

 2.4 Visible Surface Determination

With each projected vertex the distance from the projection center P to the original vertex vj is
stored asdist(vj) and for each projected polygon a reference to the original polygon is maintained
as well.

Now let A and A’ be two polygons the projectionsA andA’ of which intersect on the hemisphere,
and assume A’ is further away from the projection center P than A. ThenA’ has to be clipped to
the portion outside ofA using the intersection method described in chapter 2.3. If the original pol-
ygons do not actually intersect in three dimensional spacedist(vj) is always smaller thandist(vj’)
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in the region of overlap betweenA andA’. A similar case holds if A’ lies completely before A.

If the distancesdist(vj) anddist(vj’)  indicate that not all vj lie before all vj’ then the polygons inter-
sect in three dimensional space. This case can be handled by calculating the plane defined by P
and the three dimensional intersection line and using this plane to partition the projected poly-
gons.

 2.5 Calculating Irradiance

The formfactor FPA from a point P to a projected polygonA is computable by equation (4) as it is
based on angles between vectors and does not assume a planar polygon. Weighting the radiance of
each projected polygon by its formfactor and summing over all projected polygons gives the irra-
diance HP (see equation (3)) incident at point P.

The calculated formfactors are exact whereas the accuracy of the irradiance HP depends on the
error of the global illumination solution.

 3 The Local Pass

 3.1 The Local Illumination Model

The local illumination model describes the relationship of the irradiance E of a point P (the
“incoming” light) and its outgoing radiance L.

The (outgoing) radiance of a point P on a diffuse surface equals its irradiance multiplied by the
reflectivity of the surface plus its emission:

(5)

where EP is the emission andρP is the reflectivity of P’s surface.

 3.2 The Local Pass

The local pass avoids the artefacts of the discretized global illumination solution. These artifacts
are due to an interpolation of radiance values at inappropriate places or over unacceptably large
areas as neither the final view point nor the image resolution are before the placement of sampling
points. Based on a coarse solution of the global illumination problem a high quality picture is gen-
erated by finding the point P visible at each pixel and obtaining the colour of this pixel by comput-
ing the irradiance of P and using equation (5) to compute its radiance. Previous work employed
either the hemicube [Re92], raytracing (e.g. [WEH89]), or stochastic methods (e.g.
[Ru88,Wa94,Sh91]) to compute approximate solutions to the irradiance.

The new hemisphere projection algorithm allows to compute the exact irradiance and radiance of
an arbitrary surface point in diffuse polygonal scenes. The local illumination model is evaluated
accurately to within the precision of the global illumination simulation.

 3.3 Generalization to Arbitrary Surfaces

For surfaces with general material properties the outgoing radiance of P in the view direction  is
given by:

(6)

where the irradiance from direction  is weighted by the bidirectional reflection distribution
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function (BRDF)ρbd of P’s surface in the viewing direction  and by the cosine of the angleθ
between  and the normal vector of P’s surface. For arbitrary scenes and general BRDF’s this
integral can be evaluated only numerically due to the dicontinuities in the integrand.

The above integral can be rewritten:

(7)

where Li( ) is the radiance of the polygon Ai in the direction .

Now the integral has to be evaluated over polygonal regions which can be simplified further by
partitioning the regions into triangles if necessary. Assuming a smooth BRDF the integrand will
be a smooth function also, and therefore, this integral is significantly easier to compute than equa-
tion (6). Several optimizations are possible, e.g. the number of evaluations of the integrand can be
adapted to the solid angle subtended by the projected polygonAi.

 3.4 Optimizing the Local Pass

The complexity of the local pass is proportional to the number of pixels and the number of poly-
gons as all polygons have to be projected onto the hemisphere for each pixel. One way to reduce
the cost is to evaluate the local illumination integral not for all pixels and use some kind of inter-
polation scheme for the others. This is not dicussed in this article.

The other option is to reduce the cost for the hemispherical projection. Assume that all polygons
are stored in a space hierarchy. Traversing the hierarchy front to back and projecting the polygons
stored in each voxel is equivalent to a depth sort of the polygons. If the region of the hemisphere
corresponding to the projected silhouette of a voxel is already “covered” by polygons, the voxel
needs no further consideration.

 4 Implementation and results
The new hemisphere projection method was integrated into a standard diffuse radiosity program
and used to compute the local pass. In the following tables the following methods are compared

• Projection onto a randomly rotated hemicube using a hardware z-buffer with two resolutions.

• A projection method based on [WEH89] but using equation (4) instead of the disk approxi-
mation for formfactor calculation. The number of rays is adapted to the distance of the poly-
gon.

• The new hemisphere projection method using a two dimensional BSP tree to speed the inter-
section calculations without the optimization described in chapter 3.4.

The current implementation runs on a Silicon Graphics Indigo Workstation (R3000) with an
XS24Z hardware z-buffer. For two scenes with 176 and 9504 polygons the average time per pixel
and is given in seconds. For an simple accuracy comparison of the maximum deviation of the
formfactor sum from one is given as well. For any hemispherical projection method the sum of
formfactors in an arbitrary closed polygonal environment should equal one.

Judging from the formfactor sum the hemicube method is the most accurate, but due to aliasing
effects the error in the irradiance values may be arbitrarily high.
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 5 Conclusion and Further Extensions
The presented method introduces an exact way to compute the hemispherical projection of an
arbitrary polygonal scene with an arbitrary surface point as projection center. This allows to accu-
rately compute the irradiance for surface points using the results of a global illumination solution.

The hemisphere projection facilitates the calculation of the irradiance jacobian [Ar94]. All neces-
sary quantities can be computed from the obtained projection onto the hemisphere. Using the irra-
diance jacobian it should be possible to interpolate irradiance values in areas of the image where
the irradiance varies slowly (see e.g. [WH92]).

Incoporating methods similar to the hierarchical z-buffer [GKM93] scheme should speed up the
projection. A possible further extension is the use of error bounds to allow approximate projec-
tions.
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