
Intelligent Mouse-Based Object Group Selection

Hoda Dehmeshki⋆ and Wolfgang Stuerzlinger⋆⋆

Department of Computer Science and Engineering

York University, Toronto, Canada

Abstract. Modern graphical user interfaces support direct manipula-
tion of objects and object groups. Current object group selection tech-
niques such as lasso and rectangle selection can be time-consuming and
error-prone. This paper presents a new approach to group selection that
exploits the way human perception naturally groups objects, also known
as Gestalt grouping. Based on known results from perception research,
we present a novel method to group objects via models of the Gestalt
principles of proximity and (curvi-)linearity. Then, we introduce several
new mouse-based selection techniques that exploit these Gestalt groups.
The results of a user study show that our new technique outperforms
lasso and rectangle selection for object groups with an implicit struc-
ture, such as (curvi-)linear arrangements or clusters.

1 Introduction

Object group selection is an integral part of most graphical user interfaces. Most
systems implement rectangle and/or lasso selection as well as shift-clicking. For
the first two techniques the user drags a rectangle or a loop around the target
items. Auto-complete lasso speeds up selection by connecting the end points of
the loop automatically [9]. Shift-clicking involves clicking on each object in turn
with the shift-key held down.

Although quite simple and powerful, rectangle and lasso selection are time
consuming when the mouse-movement distance is large, e.g. when selecting large
groups of objects or on large displays. Rectangle selection requires only traver-
sal of the diagonal of the region and hence is often faster than lasso. However,
it works only well for horizontally and vertically aligned arrangements. Shift-
clicking is relatively time consuming for groups of targets with more three ob-
jects, but is the only alternative that can deal with randomly scattered targets.

In this paper, we present a new approach for group selection that addresses
the shortcomings of current selection techniques for spatially contiguous target
groups. Our approach is based on the way human perception naturally groups
objects, also known as Gestalt grouping [6]. Gestalt grouping is normally ex-
plained via a set of principles. Proximity and good continuation are among the
most important principles in the context of graphical user interfaces. Proximity
states that “being all other factors equal, the closer two elements are to each
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other, the more likely they are to be perceived as belonging to the same form”.
Good continuation states that “co-linear or nearly co-linear visual items tend to

be grouped”.

2 Related Work

A substantial body of research in human perception has focused on measuring
the strength of proximity and good continuity in dot patterns. Kubovy et al. [7]
and Oeffelen et al. [13] model proximity as decreasing exponential functions of
relative distances between dots. Feldman [3, 4] introduced a model that describes
the strength of collinearity among three or four dots as a function of inter-dot
angles (angles between lines connecting successive dots).

Contour grouping has been studied extensively in the field of computer vision.
Most relevant to the present discussion is work, which investigates perceptual
grouping in the digital ink domain [1, 10, 12]. All these approaches are based
on heuristic grouping functions, with the exception of [12]. Unfortunately, no
usability evaluation of these approaches has been presented.

Spatial parsers employed in hypertext systems automatically recognize im-
plicit structures (typically representing semantic relationships) among objects,
e.g. [5, 8]. These systems deal only with horizontal and vertical lists as well as
clusters. They cannot deal with diagonal and curvilinear configurations. More-
over, they are typically based on heuristic functions that need to be tuned on
a per-user basis. The only interaction technique offered is multi-clicking for hi-
erarchical group selection. In ambiguous cases where there is more than one
interpretation, most of the approaches visualize only the “best” interpretation.
Neither interaction with secondary groups nor selection of multiple configura-
tions is possible.

In the image editing domain, Saund et al. [11] applied a lattice-based group-
ing structure in which an object can be part of multiple groups. This system
can detect curvilinear structures as well. Similar to spatial parsers, the only
interaction technique is multiple-clicking for hierarchical group selection.

In our own previous work, we presented a system that recognizes implicit
structures [2]. In the current paper, we improve on this work in multiple aspects.
We utilize a perceptual-based scale-invariant proximity model and generalize
the good continuity model to (curvi-)linear groups. Furthermore, we introduce
several novel interaction techniques and present the results of a user study.

3 Motivation and Contributions

The approach we present in this paper is able to detect linear and curvilinear
arrangements in arbitrary orientations as well as any form of clusters. Unlike
previous work, our grouping methods are directly based on established mod-
els from perception science. This significantly increases the accuracy of Gestalt
group detection and obviates the need to tune the system for individual users.
Moreover, for ambiguous cases with more than one perceptual grouping, our



system shows all interpretations at once. Based on different visual cues, the user
can then not only distinguish the different configurations, but can also select the
desired one(s). This enables selection of multiple groups at a larger scale with-
out extra steps, for example. Finally, our approach extends existing interaction
techniques in several ways. Most prominently, it enables partial group selection
and allows the user to deal with ambiguous cases.

4 Grouping Objects by Gestalt Principles

Our system initially constructs a nearest neighbor graph. Then, it searches this
graph to detect two types of perceptual groups: proximity and good continuity,
where the last handles co-linearity as well as curvi-linearity.

4.1 Proximity Groups

Our proximity model is based on CODE, a scale-invariant dot-grouping algo-
rithm [13]. In this algorithm, the grouping strength of each element (dot) exerted
onto the others is modeled by a normal distribution function. This function is
centered at each element and its standard deviation is half of the distance be-
tween the object and its closest neighbor. The strength of a proximity group is
then defined as the summation over all individual functions. When the strength
of a region surpasses a threshold, all elements in that region are grouped. Vary-
ing the threshold detects different groups at different scales. Figure 1 illustrates
this on a group of four dots, labeled A, B, C, and D. Dashed and solid lines
represent strength functions and the overall grouping strength, respectively. Ap-
plying threshold 1 puts all objects in the same group. Threshold 2 puts A, B, C

in the same group and D in a separate group, etc.
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Fig. 1. Proximity grouping using CODE. Left: Objects are labeled A, B, C, and D.
The dashed and solid curves represent the spread functions and the gradient strength,
respectively. Right: Visualization of different thresholds.

4.2 Good Continuity Groups: Collinearity and Curvilinearity

For each set of four neighboring objects, our algorithm computes a linear coeffi-
cient (LC) indicating how strongly these four objects are perceived as a straight



line. It is defined by:

LC = exp

(

−
(a1 + a2)2

2s2(1 + r)

)

× f(l1, l2, l3).

where a1 and a2 are the angles between lines connecting the center of objects
(see Fig. 2), r and s are constants, and f is a decaying exponential function of
inter-object distances. This is based on Feldman’s model for linear groupings of
four consecutive dots [4]. We utilize a simpler model for groups of 3 objects [3].

a1

a2

Fig. 2. Illustration of parameters used for good contiuity grouping.

We extended these models to deal with arc groupings as follows: In the above
equation, we substitute every inter-line angle αi by (αi − αAvg) where αAvg is
the average of all line angles αi’s. Hence, a uniform curvilinear path gets a high
grouping coefficient similar to the case of a straight path.

In an extra step, the initial collinear and curvilinear sets are repetitively
merged to form longer groups. In each merging step, smaller groups are discarded
only if the grouping coefficient is relatively weaker than a threshold.

5 User Interaction with Gestalt Group

Here we introduce several novel interaction techniques that allow single, multiple,
or partial Gestalt group selection for spatially contiguous groups. Furthermore,
we present a technique to resolve ambiguity.

Proximity Group Selection: The fundamental approach is similar to the
multi-click approach used in text editors and spatial parsers. Clicking on an
object in a cluster, i.e. a proximity group, selects the object itself. Double-clicking
selects the cluster. Each successive click extends the selection with the closest
cluster. For example, in Fig. 3 the first click on an object in cluster C1 selects
the object. Double-clicking selects C1, the next click adds C2 to selection, etc.

Good Continuity Group Selection: Similar to cluster selection, clicking
on an object in a good continuity group selects only the single object. Moreover,
the good continuity group is also visualized as colored links between successive
objects. Double clicking then selects the whole group. If the clicked object is
part of multiple groups, all the groups are selected, see Fig.4.

Partial Good Continuity Group Selection: To select a subgroup, the
user first selects the whole group by double-clicking on an object, called anchor.
Then the user deselects all undesired objects by clicking on the first non-desired
one while holding down the alt-key. All objects on the path from the anchor
“behind” this point will then be deselected, see Fig. 5.
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Fig. 3. Proximity group selection. Clicking on an object in cluster C1 selects the object.
Double clicking selects C1, the next click adds cluster C2 to selection, etc.
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Fig. 4. Selecting good continuity group(s). Middle) Given the layout shown on the left,
double clicking on OBJ2 selects the line. Right) Double clicking on OBJ1 selects the
line and the arc.

5.1 Resolving Ambiguity

Ambiguity occurs when there is more than one visual interpretation of a scene.
This is almost inevitable as soon as more than a few objects are involved. Our
new approach permits the user to resolve ambiguities as follows:

– Ambiguity in Clusters: Grouping by proximity may not result in a unique
grouping, as proximity can operate on multiple levels ranging from local to
global. For example, in Fig. 3, three different configurations can be seen: five
small groups, two large groups, or one whole group. Our grouping algorithm
can detect all these configurations by changing the proximity threshold. Our
novel interaction technique enables the user to change this threshold as fol-
lows: subsequent clicks on the same (anchor) object while holding the shift-
key down changes the threshold to the next lower level, which enables group
selection at larger scales. In contrast, subsequent clicks while holding the
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Fig. 5. Partial selection: A) a linear structure, B) double-clicking on object 4 selects
the whole group, C) alt-clicking on object 6 then deselects objects 6, 7, and 8.



alt-key down changes the threshold to the next higher level, which selects
groups at a smaller scale, see Fig. 6.
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Fig. 6. Resolving proximity ambiguity: Left) Double-clicking on an object in C1 selects
C1, i.e. the first level in the hierarchy. Middle) Then, a shift-click adds C2 and C3 to
the selection (the next level). Right) Another shift-click selects all the clusters (the top
level). At any level, an alt-click moves a level down in the hierarchy, i.e. one step left.

– Ambiguity in Curvilinear Groups: As mentioned before, double-clicking
on an object shared by multiple groups selects all the groups. If only one
of them is desired, the rest can be deselected by alt-clicking on non-desired
node(s), as with partial selection. Figure. 7 illustrates such a scenario. The
user double clicks on OBJ1 to select the diagonal group. However, horizontal
and vertical groups are also selected as they share OBJ1. Clicking on OBJ2
and OBJ3 while holding the alt-key down deselects them.

OBJ3

OBJ2 OBJ1

OBJ3

OBJ2
OBJ1

alt-click

alt-clickdbl-click

Fig. 7. Resolving curvilinear ambiguity: Left) double clicking on OBJ1 selects three
groups (highlighted objects are selected). Right) clicking on OBJ2 and OBJ3 while
holding the alt-key down deselect both groups.



6 Experiments

We conducted a within subject study to assess the efficiency of our technique
in comparison to rectangle selection and auto-complete lasso. For rectangle and
lasso selection shift-clicking a single object adds it to the group. Ctrl-clicking
toggles selection, similar to most current GUI applications.

To ensure a fair comparison, we designed the layouts so that the bounding
box of all targets contained no distracters. The issue here is that close-by dis-
tracters affect each selection technique in a different way and hence distracters
would act as a confounding factor (a fact confirmed by pilot studies). For ex-
ample, for non-axis aligned configurations, distracters make rectangle selection
much more difficult. For lasso selection, distracters make the “tunnel” the user
has to traverse smaller, which usually results in a reduction in movement speed.
Similarly, for perceptual based techniques, very dense configurations can contain
many different perceptual groups, which force the user to choose among those
groups. Hence, we designed the layouts so that for all three techniques no sub-
sequent modification to the selected group was required. We designed 36 layouts
for groups of square targets with different structures, classified as follows:

– 3 Arrangements: linear, arc, cluster

– 3 Sizes: small, medium, large

– 4 Orientations: horiz, vert, sq45, sq135

In linear and arc arrangements targets were placed along straight lines and arcs,
respectively. In cluster arrangements, targets were randomly spread out over
an area. Size was defined by the diameter of the bounding box of the target
group (small ≈ 250, medium ≈ 450, and large ≈ 750 pixels). The horizontal and
vertical orientations had a bounding box with a significant difference in height
vs. length, at least 4 to 1 ratio; the diagonal arrangements had (almost) square
bounding boxes with objects arranged at roughly 45 or 135 degrees.

6.1 Tasks and Stimuli

In each task, participants were asked to select targets within the above-mentioned
layouts using auto-complete lasso, rectangle, or the new Gestalt-based technique.
Targets and distracters were displayed in green or black, respectively. When an
object was selected, its border became stippled and its color was desaturated.
Moreover, correctly selected target objects changed their color to yellow for bet-
ter discrimination. If only the correct targets were selected, a brief sound was
played and the software advanced to the next task, with a different layout. Selec-
tion time was measured from the first mouse click after the layout was displayed
to the time when only the correct targets were selected. The number of cance-
lations, i.e. when the user clicked on an empty area to de-select everything, or
drew a new rectangle/lasso, was also recorded.



6.2 Experimental Design

We used a repeated measure within subject design. The independent variables
were: Selection Technique (Gestalt-based, auto-complete lasso, or rectangle),
Group Arrangement (linear, arc, or cluster), Size (small, medium, or large),
and Orientation (horiz, vert, sq45, or sq135). Dependant variables were selec-
tion time and error rate. We counterbalanced the order of selection techniques
with a 3x3 Latin square to compensate for potential learning effects. Participants
were trained between 10 to 20 minutes on all three techniques by asking them
to perform various selections on 12 practice layouts. The main experiment used
36 layouts (|shape|*|size|*|orientation| = 3 ∗ 3 ∗ 4), which were shown 3 times for
each technique. This whole sequence was repeated 3 times in different orders.
Hence, each participant performed a total of 36 ∗ 3 ∗ 3 = 324 selections during
the experiment. In summary, the experiment design was as follows:

– 12 training layouts
– 36 trial layouts, categorized by target structure:

• shape (line, arc, cluster)
• size (small, medium,large)
• orientation (horz, vert, sq45, sq135)

– 3 selection techniques (lasso, rectangle, Gestalt)
– 3 repetitions
– 11 participants

A grand total of 3564 selections was performed in the experiment. At the end,
each participant was asked to fill out a questionnaire to evaluate ease of use and
learn-ability of our technique.

Apparatus: The experiments were conducted on a computer with a Pen-
tium M 1.6 Ghz processor and 1 GB memory. Screen resolution was 1024x768
and an optical mouse was used. The software was written in Python.

Participants: Eleven students from a local university campus were recruited
to participate in the experiment: six females and five males, between 25-35 years
of age. None of them had used our technique before. Most of them were unfa-
miliar with auto-complete lasso.

Hypotheses: Based on the fact that our Gestalt-based technique requires
much less mouse movement, we hypothesize that selection time will be shorter for
this technique when selecting common salient groups. Moreover, we hypothesize
that users will make fewer errors with the new technique as it conforms better
to human perception.

7 Results

Selection Time: A repeated measure ANOVA revealed that technique had
a strong main effect on selection time (F2,20 = 40.31, p ≪ 0.001). The mean
selection time for the Gestalt-based technique was 0.38 seconds, with the means
for rectangle and lasso 0.84 and 1.2 seconds, respectively, see Fig. 8. A Tukey-
Kramer test reveals that all three techniques are different. As illustrated in
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Fig. 8. Comparing selection time among techniques.

Fig. 9 and 10, orientation and shape had no significant effect on selection time,
while size had a significant effect F2,20 = 98.86, p ≪ 0.001. There is a strong
interaction between technique and size of the layout, F4,20 = 34.39, p ≪ 0.001.
While size had no effect on Gestalt-based technique, lasso and rectangle selection
time depended strongly on the size of the target group, see also Fig. 11.
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Fig. 9. Orientation does not have a significant effect on selection time.

Finally, we analyzed learning for each technique by plotting selection time
vs. repetitions. The Gestalt-based technique showed no improvement over time,
but participants got moderately faster with lasso and rectangle selection, see
Fig. 13. When comparing performance per technique across participants, it is
notable that most variation occurred within the rectangle technique, while the
Gestalt technique had the least, see Fig. 12. As there was noticeable learning
observable in the experiment, we analyzed the average number of cancelations
only for the final, third, repetition. For this, there is not significant difference
between the cancelation rates, see also Fig. 14.
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Fig. 10. Shape does not have a significant effect on selection time.
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Fig. 11. Interaction between size and selection technique. Note that Gestalt is insen-
sitive to size.

8 Discussion

Our technique is 2.3 respectively 3.2 times faster than rectangle or lasso. This is
remarkable as the there were no nearby distracters and hence the trial layouts
were equally well suited for rectangle and lasso. If distracters existed, we would
expect that each technique would be affected differently (e.g. rectangle selection
by non-axis aligned structures, lasso by narrow tunnels, Gestalt by ambiguous
cases).

Orientation has a noticeable effect on rectangle selection. In particular, the
time for the sq45 layout (layouts along y = x) is relatively longer than all other
conditions. One explanation for this is that most people draw rectangles from
the top-left corner to the bottom-right. For the sq45 layouts, identifying a good
top-left corner point that covers only the targets is not trivial and errorprone.

The most likely explanation for the fact that our technique is faster is that
much smaller mouse movements are needed: instead of traversing the circumfer-
ence of a target group or the diagonal of the corresponding bounding box, the
user just (double-)clicks on one of the group members. Rectangle is faster than
lasso as the diagonal is shorter than the (partial) circumference, even with auto-
complete lasso. Also, when using the mouse, most people find it easier to drag
out a rectangle compared to drawing a curve that traverses a tunnel. Clearly, in
the presence of nearby distracters, there exist layouts and target groups where



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11

Participant

T
im

e
(s

)

Gestalt Lasso Rectangle Overall

Fig. 12. Comparing overall and per technique performance of participants.
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Fig. 13. Effect of repetition on selection time (learning effect).

rectangle or lasso selection may perform better than our technique. For exam-
ple, lasso can outperform all other techniques for partial selection of a dense,
random cluster. In general, we believe that rectangle and lasso are well suited
for selection of groups that have significant two-dimensional spatial extent (i.e.
area arrangements) or that are axis-aligned. On the other hand, our technique
is highly well suited for groups with curvilinear layouts (i.e. one-dimensional ar-
rangements), while still being competitive for cluster selection. Hence, we believe
Gestalt selection nicely complements rectangle and lasso selection.

9 Conclusion and Future Work

We introduced a new perceptual-based object group selection technique for spa-
tially contiguous groups. Based on established models from perception research,
we presented a new approach to automatically detect salient perceptual groups
with the Gestalt principles of proximity and good continuity. Then, we intro-
duced several new, simple, and efficient mouse-based interaction techniques to
select and deselect such Gestalt groups. The results of our user study show that
our technique outperforms lasso and rectangle selection when selecting groups
with implicit structures.

We have not yet formally evaluated our technique in more complex scenarios,
such as partial group selection and the resolution of ambiguous cases. Informal
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Fig. 14. Average cancelation rate for different techniques.

evaluations indicate that the technique works well for these cases, but we plan to
do a complete user study in future work. Moreover, we will investigate extensions
of our technique for highly dense configurations. Finally, we will investigate the
complex interplay of spatial and similarity cues and extend our system to deal
with objects with different visual features (such as shape, color, and size).
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