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Abstract. We present an analysis of how pointing performance in in-air un-

instrumented pointing can be improved, towards throughput equal to the mouse. 

Pointing using a chopstick is found to achieve the highest average throughput, with 

3.89 bps. This is a substantial improvement over using the finger to point at the 

screen. Two potential reasons for the throughput gap between chopstick and finger 

operation were explored: the natural curvature of human fingers and tracking issues 

that occurs when fingers bend toward the device. Yet, neither one of these factors 

seems to significantly affect throughput. Thus other, yet unexplored factors must be 

the cause. Lastly, the effect of unreliable click detection was also explored, as this 

also affects un-instrumented performance, and was found to have a linear effect. 
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1 Introduction 

Un-instrumented in-air interaction has rapidly gained popularity with the introduction of a 

number of new interaction devices. Potential applications for un-instrumented in-air point-

ing include interaction in environments where mouse is inadvisable, such as while cook-

ing, mobile computing, medical scenarios [9], and interaction on large wall displays. 

The associated tracking devices for in-air interaction enable new and interesting inter-

action possibilities, including gestures and multi-finger interaction. Yet, previous work [7] 

has identified that the raw pointing throughput for in-air pointing is substantially less than 

for the mouse. Thus, it is unclear whether un-instrumented pointing has the potential to 

match (much less exceed) mouse throughput levels. It is also unclear what aspects of un-

instrumented pointing tracking need to be improved to possibly reach mouse-like levels. 

Fitts’ Law [17] implies that the further away or the smaller a target is, the harder it will 

be to select. Building on decades of research, the ISO 9241-9 standard [14] standardizes 

Fitts’ law experimental methodologies. It defines throughput T as the primary measure of 

performance, calculated as T = log2(De/We+1)/MT, where, De is the effective distance 

and We the effective width. These effective values measure the task that the user actually 

performed, not the one that she or he was presented with [17]. This reduces variability in 

identical conditions, which facilitates comparisons between different Fitts’ law studies. 
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1.1 Related Work 

Ray pointing is a method for pointing at objects, where the user moves a tracked arm or 

finger or a tracked object, such as a pen or laser pointer, and orients it in the direction she 

or he wishes to point to. The first object along that ray is then highlighted and selected 

when the user indicates selection, e.g., through a button click. Ray pointing remains a 

popular selection method for large screen and virtual reality systems. Many studies have 

investigated this technique in large displays [8,13,15,18,29,33], Virtual Reality 

[11,14,24,27], or tabletop scenarios [5]. All these comparisons used devices. 

Ray pointing uses 3D input to afford control over a 2D cursor. Effectively users rotate 

the wrist (or finger) to move the cursor. Early work on finger-pointing used optical track-

ing [10]. Balakrishan and MacKenzie [4] identified that a finger affords about 75% of the 

bandwidth relative to the wrist. Either moving the finger or the whole hand to control the 

cursor affords efficient pointing [3]. Yet, tracking very small hand rotations with 3D 

tracking systems with sufficient accuracy is difficult, as tracking noise is magnified in-

creasingly along the ray. This is the most likely explanation why ray pointing is inferior to 

other pointing methods in small-scale environments, such as desktops, e.g., [27].  

Gallo et al. [9] explored an un-instrumented hand tracking device in a medical context, 

where sterility is a major concern. Several approaches used various camera systems 

[14,19]. In another work [12], the authors look at the requirements of un-instrumented 

tracking systems and their FingerMouse application used a one-second dwell time for 

selection. Song et al. [24] used finger pointing to select and move virtual objects. None of 

the above work evaluates the performance of un-instrumented in-air pointing with the 

throughput measure as defined by the ISO standard. The exception identified that its 

throughput was slightly less than 3 bps [7]. This is substantially lower than standard 

mouse throughput, which is often found to be approximately 4 bps. 

1.2 Motivation and Contributions 

This paper explores several open explanations for the lower throughput of un-

instrumented pointing relative to the mouse [7]. We first evaluated the throughput of a 

(rigid) chopstick as pointing device, which might have a tracking advantage over a regular 

finger. It is longer, more cylindrical, and allows for a grip that may offer better directional 

control. Next, we evaluated pointing throughput of a finger with and without a rigid cast 

to determine if forcing the finger into a more cylindrical shape would improve tracking. 

Finally, we investigated the effect of click detection reliability on throughput, as this is 

another issue that can decrease performance in in-air interaction. Our contributions are: 

 An evaluation of the selection performance of a rigid pointing device (chopstick). 

 An evaluation of the selection performance of a perfectly cylindrical finger (cast). 

 An analysis on the effect unreliable bent finger tracking has on selection performance. 

 An evaluation of the effect selection reliability on throughput. 



We deliberately chose the Leap Motion for our work, as it is currently one of the best 

devices for tracking un-instrumented fingers. We considered attaching individual markers 

to fingers with an optical tracking system. Yet, tracking orientations of fingers requires a 

large tracking target, which may slow down movements and cause fatigue. 

1.3 Pilot Study 

Looking at various options to improve tracking robustness, we found that the Leap Mo-

tion API supports also long, thin, rigid, cylindrical objects, such as pencils. Based on ad-

vice from the Leap Motion forum, we picked a chopstick. We hypothesized that using a 

chopstick would also increase throughput because it can be held more stably in a pencil 

grip, i.e., between three fingers. 

We recruited 8 participants (mean age 21 years, SD 4.4 years). Two participants were 

male and all right handed. The Leap Motion sensor was placed directly in front of the 

display. The Leap Motion software used for this first study was version 1.0.9+8410 and 

the hardware device was LM-010. We used USB3 and Vsync was turned off in all condi-

tions to minimize latency. Both choices increase interaction performance [6], to avoid the 

potential impact of large differences in latency on pointing performance [22,24]. End-to-

end latency with the Leap Motion was 48 ms, and with the Microsoft IntelliMouse Optical 

32 ms. We used the default pointer speed of Windows 7. The software used for this study 

was FittsStudy [32]. We only added support to read data from the LeapMotion. 

 

                

Fig. 1. The setup of the pilot study (left), issues observed with tracking bent fingers (right). 

For this experiment there were two input conditions for selecting targets for the partici-

pants to use: the Chopstick and the Mouse. The Chopstick method required the user to 

hold a standard disposable wooden chopstick in her or his dominant hand, held like a 

pencil. Targets were then selected by aiming the tip of the chopstick toward the target on 

the screen. The Mouse method required the user to operate a computer mouse as they 

normally would. After targets had been acquired using one of these two methods, targets 

were selected using the left click button in the Mouse method and the spacebar on the 

keyboard in the Chopstick method. The spacebar was operated by the non-dominant hand 



of the participant and was placed in a comfortable operating position so that the dominant 

hand used for object acquisition was not obstructed Fig. 1 left illustrates the setup. 

First, each participant was given a brief background questionnaire, to record gender, 

age, and handedness. Then, the participant was introduced to the Chopstick condition and 

shown how it worked. Participants were required to use a pencil grip for holding the 

chopstick. After comfortable with basic operation, one of the input conditions was ex-

plained to the participant. The order of the input methods was counterbalanced so that 

each of the possible orders was represented equally. When participants were comfortable 

with the input method, they completed a series of Fitts’ law selection tasks using either 

the mouse or the chopstick in her or his dominant hand. Ten blocks of 9 Fitts’ law condi-

tions with 11 trials were completed with the ISO methodology for a total of 990 trials per 

condition. Target widths were 32, 64, and 96 pixels and amplitudes 256, 384, and 512 

pixels. Then the next input method was presented and the above process repeated. At the 

end of the experiment, participants were given a brief questionnaire about any discomfort 

they might have experienced while using un-instrumented tracking and the mouse.  

Data was first filtered for obvious participant errors, such as hitting the spacebar twice 

on the same target or pausing in the middle of a circle (less than .004% of data collected). 

For all other analysis and following the ISO standard, we recorded an error whenever the 

cursor was outside the target upon selection, regardless if this occurred due to human or 

system, i.e., tracking error. As our data is not normally distributed and fails Levene’s test 

for homogeneity, we conducted ANOVA tests after a Aligned Rank Transform (ART) for 

nonparametric factorial data analysis, [31]. 

 

   

Fig. 2. Graph of average throughput (left) and movement times (middle) for chopstick and mouse. 

Error bars show standard deviation. Difference is statistically significant. Graph of learning over 

time (right). Average throughput for each block is displayed. Power curve is fitted to data. 

In terms of throughput there was a significant effect for device used (F1,7 = 19, p < 

.001) with a power (1 – β) of .97 and a large effect size (η2) of .25. For a graph of average 

throughput values see Fig. 2 (3.54 bps for the chopstick and 4.13 bps for the mouse). 

There was a significant effect for device used for movement time (F1,7 = 18, p < .01) with 
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a power (1 – β) of 0.95 and a very small effect size (η2) of .05. See Fig. 2 for average 

movement times. There was a significant effect for device used on error rate (F1,7 = 8, p < 

.05) with a power (1 – β) of .68 and a negligible effect size (η2) of .01. The mean error 

rate was 9.8% for the chopstick and 3.9% for the mouse. There was no observed statisti-

cally significant learning affect across all blocks (F9,63 = 14, p < .001) with a power (1 – β) 

of .99 or in the learning curve between devices (F9,142 = 0.83, ns). Fig 2. shows perfor-

mance over time. Device used (chopstick or mouse) crossed with ID value had no signifi-

cant effect on throughput (F6,97 = 0.02, ns). Fig 2. shows average movement times for 

each ID value. The R2 values show an excellent fit with Fitts’ law. 

The throughput for the chopstick still has a .39 bps difference in throughput from the 

mouse by the last block (3.89 vs. 4.28 bps). Yet, latencies in our conditions were in a 

region (below 50 ms) where they does not seem have a significant effect [22]. This makes 

it unlikely that latency alone can explain the result. The potential confound of using the 

mouse and its button with one hand vs. clicking the space bar with the other hand in the 

chopstick condition is also an unlikely explanation [7]. The error rate for the chopstick is 

substantially higher in our current study, either due to limitations in tracking by the Leap 

Motion or human limits on the ability to point precisely at a distance. Currently we do not 

have enough information to reliably distinguish between these two causes. 

Our results shows that a well-chosen in-air pointing device can achieve high pointing 

performance: 3.89 bps. That is within the lower end of throughput values observed for the 

mouse (3.7 bps – 4.9 bps) [25]. With more practice this value may increase further. Inter-

estingly, two participants reached a crossover point where the chopstick achieved a 

throughput greater than the mouse. An expert user (not a participant), who had been prac-

ticing various pointing methods for four months, achieved an average throughput of 4.75 

bps with the chopstick and 4.73 bps with the mouse. Yet, while mouse-like levels appear 

to be attainable with more training, such amounts of training are daunting. Still, we cannot 

rule out that the chopstick will match the mouse in the long term. In this pilot we did not 

observe noticeable fatigue effects. The chopstick achieved a throughput of 3.89 bps by the 

last block, much more than finger operation in prior work [7]. Even accounting for differ-

ences in latency (48 ms with our chopstick vs. 63 ms with the finger in [7]), this gap is 

still substantial. The reason behind this are further explored in the next study.  

2 User Study 1 

The main objective of this user study was to determine if a perfectly cylindrical, rigid 

finger would be capable of achieving the same levels of throughput seen with a chopstick 

in a comparable environment. After all, one possible explanation for the chopstick’s supe-

rior performance is its rigid cylindrical nature, making it potentially easier to track. In 

pilot studies we identified that finger direction tracking reliability of the Leap Motion 

decreased, if the finger was bent too far towards the tracking device. See Figure 1, right 



for a depiction of this problem. In this figure, the top two frames show a straight finger 

and the corresponding finger direction arrow. Subsequent frames show results with in-

creasing finger bend, where the direction deviates more and more. Moreover, we observed 

that some users had significantly more curved fingers than others. An example for this 

finger curve is visible in the index finger in Figure 3, rightmost image. 

 

 

Fig. 3. Pictures of the four input conditions. From top left to bottom right: Cast Normal, Cast Side, 

Normal, and Side 

We also speculated that finger tracking might behave differently depending on whether 

the users held their hands palm facing down or rotated 90° inwards. We included such 

conditions here as it might be easier for the device to track the position of the finger and 

determine the pointing direction – if finger curvature plays a significant role. 

2.1 Input Conditions 

For this user study there were four input conditions for selecting targets for the partici-

pants to use. These were the Cast Normal, the Cast Side, the Normal, and the Side meth-

od, as shown in Figure 3. The Cast Normal method required the user to wear a paper 

“cast” around her or his dominant pointer finger. This cast was specially designed and 

adapted to each user’s finger. A piece of regular computer paper was cut so that it was 

wide enough to wrap around the user’s finger and long enough to cover the finger to the 

tip. This piece of paper was then wrapped around the user’s finger and taped with clear 

adhesive tape to form the “cast”. The finger was held in the “normal” pointing orientation 

with the bottom of the user’s palm facing down. In the Cast Side method, the “cast” was 

again worn on the user’s finger but this time the finger was held in the “side” position 

with the user’s palm perpendicular to the desk. The Normal method required the user to 

hold their hand with the palm facing down, toward the desk, without a cast. In the Side 

condition the user’s palm was held perpendicular to the desk, again without a cast. In all 

conditions, after targets had been acquired through pointing, selection was indicated via 

the spacebar on the keyboard. The spacebar was operated by the non-dominant hand of 

the participant and was placed in a comfortable operating position so that the dominant 

hand used for object acquisition was not obstructed. We hypothesized here that if finger 

cast performance reaches chopstick levels, then the grip style is likely not the cause of the 

chopstick’s performance. In this case, rigidity would be a  more likely explanation.  



2.2 Participants and Procedure 

We recruited 8 different participants for this study (mean age 20 years, SD 2.3 years). 

Three participants were male and all but one were right handed. First, participants were 

given a brief background questionnaire which recorded gender, age, and handedness. 

Next, a “cast” was created for each participant as described in the Input Conditions. Then, 

the participant was introduced to the finger tracking system and the experimenter demon-

strated how it worked. After was comfortable with basic operation, one of the input condi-

tions was explained to the participant. The order that participants were exposed to each of 

the input methods was determined by a Latin Square design. Once comfortable with the 

current input method, the participant completed a series of Fitts’ law selection tasks using 

one of the four input conditions. Five blocks of 9 Fitts’ law conditions with 11 trials per 

condition for a total of 495 trials were completed, again using the ISO methodology. Tar-

get widths of 32, 64, and 96 and target amplitudes of 256, 384, and 512 pixels were used. 

The participant was then presented with the next input method and so on. 

2.3 Results 

Data was first filtered for errors, such as hitting the spacebar twice on the same target or 

unusually long pauses (less than .01% of total data). The data is not normally distributed 

and fails Levene’s test for homogeneity, and we again used ART before ANOVA. 

There was no significant effect for the used interaction method (F3,21= 1.35, p > .05) on 

throughput, nor for any pair of conditions. See Figure 4 for average throughput values. 

 

   

Fig. 4. Graph of average throughput values (left) and movement time (middle) and Fitts’ law model 

(right) for each condition. Error bars show standard deviation. 

There was no significance effect for the used interaction method (F3,21 = 2.57, p > .05) 

on movement time, nor for any pair of conditions. See Figure 4 for average movement 

times. The used interaction method had no significant effect on error rate (F3,21 = 0.27, 

ns). The four conditions had error rates of 14%, 12%, 13% and 13% respectively. Across 
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all blocks there was no significant effect on learning (F4,28 = 1.15, p > .05) and no effect 

on learning crossed with the used interaction method (F12,145 = 1.64, p > .05). The used 

interaction method crossed with ID had no significant effect on throughput (F18,207 = 1.03, 

p > .05). See Fig. 4 for the data for all conditions. The equations and fit values for the 

Fitts’ law models are as follows: Cast Normal: y = 310.58 x – 7.9434, R2 = 0.9857, Cast 

Side: y = 356.31 x – 26.25, R2 = 0.9743, Normal: y = 337 x – 49.201, R2 = 0.9826, Side: y 

= 329.88 x – 8.9465, R2 = 0.9879, again all conforming to Fitts’ law. 

2.4 Discussion 

This study indicates that the cast conditions are similar to finger tracking. Therefore, it is 

unlikely that the natural curvedness and potential flexibility of a human finger cause lower 

pointing throughput relative to a rigid object. Yet, there is still a 15+% difference (0.6 

bps) between the throughputs of finger operation and chopstick operation that remains 

unaccounted for. The higher throughput from the pilot study must thus be due to some 

other factor, such as tracking a longer object or the different grip on the chopstick. Our 

results largely confirm the results of previous work [4], but also extend it through our use 

of the ISO methodology, which removes the effect of the speed-accuracy tradeoff. 

Moreover, informal observations during this experiment identify fatigue as a potential 

issue, similar to [7]. This may be due to the duration of the experiment, which lasted about 

one hour. After all, many people are not used to using their index finger for long periods 

as a pointing “instrument”. Still, performance did not drop noticeably in later trials. 

3 User Study 2 

To further investigate the potential of in-air interaction, we decided to look at the effect 

that varying degrees of click detection reliability have on throughput. After all, even a 

device that affords highly precise pointing may suffer if the selection of targets cannot be 

indicated reliably. To accurately and reproducibly control the level of reliability, we de-

cided to perform this study with a mouse, as its buttons are normally 100% reliable. The 

results of such an experiment can then be used to infer the potential performance impact 

of a selection method that is not 100% reliable, such as in in-air “click”. 

3.1 Participants, Setup and Procedure 

We recruited 10 different participants for this study (mean age 23 years, SD 4.7 years). 

Four participants were male and all but one were right handed. The left-handed person 

preferred to operate the mouse with the right hand. The mouse used was a Microsoft Intel-

liMouse Optical set to the default pointer speed on the Windows 7 operating system. The 



system used with the mouse had an end-to-end latency of 28 ms (Vsync was off). The 

software used for conducting the Fitts’ law tasks was again FittsStudy [32]. 

First, the participant was given a brief background questionnaire to record gender, age, 

and handedness. Then, the participant was informed that the mouse button used for click-

ing would not always be reliable and that sometimes it might need to be clicked again. We 

chose to inform participants in advance to avoid potential confounds due to side effects of 

frustration. We tested five levels of reliability: 100%, 99%, 98%, 95%, and 90%, to keep 

frustration levels at an acceptable level. The order that participants received each of these 

conditions was counterbalanced so that each of the possible orders was represented equal-

ly. Participants then completed 2 blocks of 12 Fitts’ law conditions with 11 trials per con-

dition for a total of 264 targets with the ISO methodology. Target widths of 16, 32, 64, 

and 96 pixels and amplitudes of 256, 384, and 512 pixels were used. 

3.2 Results 

As our data is not normally distributed and fails Levene’s test for homogeneity, all 

ANOVA tests were again conducted on data transformed using ART. 

There was a significant effect for reliability level (F4,36 = 7, p < .001) on throughput 

with a power (1 – β) of .99 and a medium effect size (η2) of .09. A Tukey-Kramer Multi-

ple-Comparison test identified two statistically different groups. Group one consists of 

90% and 95% reliability and group two of 98%, 99%, and 100% reliability. See Fig. 5 for 

average throughput values. There was a significant effect for reliability level (F4,36 = 8, p 

< .001) on movement time with a power (1 – β) of .99 and a very small effect size (η2) of 

.01. A Tukey-Kramer Multiple-Comparison test again identified two statistically signifi-

cant groupings. However, the groupings were different than the throughput groupings. 

Group one consisted of 90%, 95% and 98% reliability and group two consisted of 98%, 

99% and 100% reliability. In other words, 98% was not statistically different from all 

other conditions. See Figure 5 for average movement times. 

 

  

Fig. 5. Average throughput values (left) and movement times (right) for each reliability level. Error 

bars show standard deviation. A linear trendline and its corresponding equation is also shown. 
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The used reliability level had no significant effect on error rate (F4,9 = 1.86, p > .05). 

The mean error rates for the 90% to 100% conditions were 4.2%, 1.4%, 3.7%, 4.8% and 

0.8% respectively. Across all blocks, there was no significant effect on learning (F1,18 = 

0.05, ns) and no effect on learning crossed with level of reliability (F4,85 = 1.08, p > .05). 

Reliability level crossed with ID had no significant effect on throughput (F32,428 = 6, p > 

.05). See Fig. 5 for the data for all conditions. The equations for the Fitts’ law models are 

as follows: 90%: y = 170.82 x + 155.98, R2 = 0.988, 95%: y = 148.78 x + 212.89, R2 = 

0.988, 98%: y = 167.44 x + 95.258, R2 = 0.987, 99%: y = 156.39 x + 103.94, R2 = 0.996, 

100%: y = 141.48 x + 138.47, R2 = 0.998. 

3.3 Discussion 

These results indicate that there is a roughly linear drop-off in pointing performance as a 

selection technique becomes more unreliable. The 90% and 95% conditions performed 

significantly worse than 98% and above in terms of throughput. We see this as an indica-

tion (but not as proof) that any click-gesture recognition system that is 95% reliable or 

less is going to noticeably and negatively impact interaction performance with a system. 

While there was no significant difference in performance between 100%, 99%, and 98%, 

some participants did still notice when they were not at 100% condition. This indicates 

that while a system with reliability above 95% might not suffer much in terms of through-

put, failures might still be noticeable to the users. Small amounts of errors might be less 

notable in systems without force feedback or where users expect it to be unreliable.  

From observations during the experiment we also identified a behavioural difference 

for many in the 90% condition: most participants would pause after selecting a target 

before the next one. Thus, it seemed like the participants expected failure rather than suc-

cess in the 90% condition. We suspect that as the reliability gets even lower all partici-

pants would anticipate a failure, not just most of them. 

Perfect reliably in un-instrumented in-air pointing with a single camera is very diffi-

cult. Even very recent work does not achieve 100% reliability [23]. Thus on top of track-

ing issues one must also factor in a loss in throughput due to click detection unreliability. 

4 Overall Discussion 

We explored several possibilities for the lower throughput of un-instrumented pointing 

relative to the mouse, as identified by previous work [7]. First, we identified that pointing 

with chopsticks can approach the performance traditionally seen with mice. This points to 

new interesting avenues for future user interfaces. We also evaluated finger pointing with 

and without a rigid cast. Given that we found no significant difference, it is unlikely that 

the rigidity of the input device is the primary explanation. This leaves the length of the 

chopstick or the grip style as possible explanations. Finally, we evaluated the effect of 



click detection reliability on throughput, another potential issue in in-air interaction. Our 

results indicate that in-air “click” detection must have between 95 and 98% reliability, for 

in-air interaction to have the potential to perform as well as a mouse. 

5 Conclusion 

In this paper we evaluated several factors that were hypothesized to affect pointing per-

formance: the shape of the finger, finger bend tracking difficulties, and click detection 

reliability. Moreover, we showed that by using a chopstick, users could reach the lower 

end of the range of pointing throughputs seen with the mouse. We also identified that 

finger curvedness or rigidity have no effect on pointing throughput with the Leap Motion. 

Finally, we showed that unreliable selection techniques affect performance (approximate-

ly) linearly and identified key values between 90% and 100% reliability. 
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